First ingredient we need: Bayes Theorem

\[P(A \text{ and } B) = P(B \text{ and } A), \quad P(A \text{ and } B) = P(A|B)P(B) \]
\[P(A|B)P(B) = P(B|A)P(A) \]
\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

That's it!

Bayes then lets us "flip around" conditional probabilities.

In the text classification it is easier to maximize \(Pr(d|c) \) than \(Pr(c|d) \).

\[
\text{MAP} = \arg \max_c \frac{Pr(c|d)}{Pr(c)}
\]
\[
= \arg \max_c \frac{Pr(d|c)Pr(c)}{Pr(d)}
\]

Now, to find a way to calculate \(\text{MAP} \) we need to make some simplifications.

I. The document we want to classify is constant, this means that \(Pr(d) \) is the same regardless of \(c \Rightarrow \) it won't change what \(\text{MAP} \) is:

\[
\text{MAP} = \arg \max_c Pr(d|c)Pr(c)
\]

Next, the document \(d \) is a collection of words:

\[Pr(d|c) = Pr(w_1, w_2, \ldots, w_n | c) \]

This is not the bag of words (BOW) model.

Assume Bag-of-Words \(\Rightarrow \) position/order of words doesn't matter.
Assume conditional independence \(\Rightarrow \) probabilities of different words appearing together are independent given the document class.

\[Pr(d|c) = Pr(w_1, \ldots, w_n | c) = Pr(w_1 | c) \cdot Pr(w_2 | c) \cdots Pr(w_n | c) \]

Note these last two assumptions are certainly not true for a real text!
Put these together and you have constructed a (text) classifier called **Naive Bayes**

\[
C_{\text{MAP}} = \arg\max_C \Pr(d|c) \Pr(c)
\]

\[
\downarrow
\]

\[
C_{\text{NB}} = \arg\max_C \Pr(c) \prod_{i=1}^{\hat{P}} \Pr(w_i|c)
\]

Learning Naive Bayes

How to compute these probabilities...

Training corpus \(N_{\text{doc}}\) documents, each labeled \(w/c = \text{spam or ham}\).

Estimate Probabilities:

\[
\hat{P}(c) = \frac{\# \text{docs labeled } c}{N_{\text{docs}}}
\]

\[
\hat{P}(w_i|c) = \frac{\text{count}(w_i,c)}{\sum_j \text{count}(w_j,c)}
\]

Problem! What if, we use this \(\hat{P}\) estimator and then, when we attempt to classify a new document we see a new word we have never seen before?

\rightarrow \text{word will have a count of zero} \rightarrow \hat{P}(w_i|c) = 0

plug into \(C_{\text{NB}}\) and it becomes zero:

\[
C_{\text{NB}} = \arg\max_C \hat{P}(c) \prod_{i=1}^{\hat{P}} \hat{P}(w_i|c)
\]

The fix is **maddness** \(\rightarrow\) Laplace (or additive) smoothing!

\[
\hat{\Pr}(w_i|c) = \frac{\text{count}(w_i,c) + 1}{\sum_j \text{count}(w_j,c) + 1} = \frac{\text{count}(w_i,c) + 1}{\sum_{j=1}^{n} \text{count}(w_j,c) + n}
\]