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Natural languages are full of rules and exceptions. One of the most famous quantitative rules
is Zipf’s law which states that the frequency of occurrence of a word is approximately inversely
proportional to its rank. Though this ‘law’ of ranks has been found to hold across disparate texts
and forms of data, analyses of increasingly large corpora over the last 15 years have revealed the
existence of two scaling regimes. These regimes have thus far been explained by a hypothesis
suggesting a separability of languages into core and non-core lexica. Here, we present and defend
an alternative hypothesis, that the two scaling regimes result from the act of aggregating texts. We
observe that text mixing leads to an effective decay of word introduction, which we show provides
accurate predictions of the location and severity of breaks in scaling. Upon examining large corpora
from 10 languages in the Project Gutenberg eBooks collection (eBooks), we find emphatic empirical
support for the universality of our claim.

PACS numbers: 89.65.-s,89.75.Da,89.75.Fb,89.75.-k

ZIPF’S LAW AND (NON) UNIVERSALITY

Given some collection of distinct kinds of objects
occurring with frequency f and associated rank r accord-
ing to decreasing frequency, Zipf’s law is said to be
fulfilled when ranks and frequencies are approximately
inversely proportional:

f(r) ∼ r−θ, (1)

typically with θ ' 1. Though Zipf’s functional form has
been found to be a reasonable one for disparate forms
of data, ranging from frequencies of words to sizes of
cities in Zipf’s original work [1, 2], its lack of total univer-
sality in application to natural languages is now widely
acknowledged [3–8].

Recently it was suggested [3, 4] that large corpora
exhibit two scaling regimes (delineated by some b > 0):

f(r) ∼
{
r−θ, : r ≤ b
r−γ , : r > b

, (2)

the first being that of Zipf (θ = 1) and the second dis-
tinctly more variable [4], (though generally γ > 1). Fer-
rer and Solé hypothesized in [3] that these two regimes
reflected a division of natural languages into two lexi-
cal subsets—the kernel (core) and unlimited (non-core)
lexica.

We observe that in all studies finding dual scalings that
the texts analyzed are of mixed origin, that is, they are
not derived from a single author, or even a single top-
ic. Montemurro indicated in [4] that combining hetero-
geneous texts could generate effects that shield investi-
gators from the true underlying nature of this second
scaling regime:

To resolve the behavior of those [high rank]
words we need a significant increase in vol-
ume of data, probably exceeding the length
of any conceivable single text. Still, at the
same time it is desirable to maintain as high
a degree of homogeneity in the texts as possi-
ble, in the hope of revealing a more complex
phenomenology than that simply originating
from a bulk average of a wide range of dis-
parate sources.

With this inspiration, we focus on understanding the
effects of combining texts of varying heterogeneity—a
process we refer to as “text mixing”.

STOCHASTIC MODELS

In the years following Zipf’s original work, various
stochastic models have been proposed for the genera-
tion of natural language vocabularies. The first of these
was that proposed by Simon [9], and based on Yule’s
model of evolution [10]. This work is a powerful com-
panion to understanding Zipf’s empirical work, and can
be seen as the natural antecedent of the rich-gets-richer
models [11, 12] for growing networks that have interest-
ed the complex systems community over recent years.
Indeed, perhaps the most important piece we may draw
from Simon’s model is that a rich-gets-richer mechanism
is a reasonable one for the growth of a vocabulary.

An important limitation of Simon’s model is that it
is only capable of producing a single scaling regime,
which, as we know is an incomplete picture. Further-
more, the scalings accessible via the Simon model were
strictly less severe than the ‘universal’ θ = 1 exponent.
So, if one assumes the Simon model as truth, with a
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fixed word introduction rate α0, Zipf’s exponent should
be variable and necessarily less than 1, though empiri-
cally found indistinguishable from 1, that is θ = 1− α0,
with α0 � 1 [9].

Recently, a modification to Simon’s model was pro-
posed in which two types of words could be produced—
core and non-core words [5]. As a built-in feature of
the core/non-core vocabulary (CNCV) model, the size of
the core set of words was prescribed to be finite, while
the non-core was allowed to expand indefinitely. Aside
from introducing two classes of words, the most impor-
tant distinction of this model from its predecessor was
a rule for the decay in the rate of introduction of new
words, α. Along with producing the CNCV model they
showed that when α decays as a power-law with exponent
−µ, of the number of unique words, n, the relationship
between µ and the lower rank-frequency exponent, γ, is
a difference of θ, i.e.,

α(n) = α0 · n−µ ⇒ f(r) ∼ r−(θ+µ), (3)

with γ = θ + µ [5]. The distinction between word types
provided a means for postponing the point at which their
power law decay would occur, thereby generating two
scaling regimes. We note that the severity of the sec-
ond scaling was only contingent upon the existence of a
decay in the rate of introduction of new words, and that
this decay was imposed, rather than the result of the
existence of two word types. We are therefore drawn to
find an explicit mechanism capable of producing power-
law decaying word introduction rates, and hence multiple
scaling regimes.

TEXT MIXING

As we have described, the CNCV model offers a means
by which one can obtain a second scaling. The mod-
el is, like Simon’s, framed as a model of the genera-
tion of a vocabulary. However, we are led to question
whether lower scalings are a product of vocabulary gen-
eration or an artifact of an interaction between disparate
texts. Suppose a collection of texts, C = {T1, ..., Tk},
is read sequentially, and that each has rank-frequency
distribution of Zipf/Simon form. Upon constructing ide-
alized rank-frequency distributions from empirical data
(see Materials and Methods), we find that their com-
bined distribution, possesses multiple scaling regimes (see
Fig. 1). Though each individual vocabulary might have
been created without a decay of word introduction, an
overlap in the words they use has it seem as though the
appearance of new words is rarer by the time the lat-
er texts are read. If one reads the texts repeatedly and
in permuted orders, the resulting decay in the rate of
word introduction likely does not evince itself until the
mean text size (mean number of unique words per text)
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FIG. 1: (A) An idealization (black points) of a
rank-frequency distribution (gray points) for a single

texta from the English eBooks collection. Idealization is
defined by a pure power law of scaling 1−N/M (red

dashed line, see Materials and Methods). (B) The
mixtures of all texts (gray points) and their

idealizations (black points) from the English eBooks
collection. Note that neither mixture results in a pure

power law such as Zipf’s (θ = 1, red, dashed line).

aData: The complete historical romances of Georg Ebers.

is reached, but certainly not before the minimum text
size is reached.

Operating under this ansatz—that a text mixing-
derived scaling break, b, covaries with the mean number
of unique words per text, Navg, in a corpus—we investi-
gate thousands of corpora defined by samples from the
English eBooks database (see Materials and Methods for
more details on text sampling and a complete description
of the eBooks database). Obtaining 1, 000 text-sample
corpora from each of the 10 deciles of the text-size distri-
bution, we regress for b (see Materials and Methods),
and record Navg to find that the two covary strongly
along the line b = Navg for all but the most extreme
deciles (see main axes Fig. 2, which we return to later
in the discussion). We see that this relationship breaks
down in the presence of large-N texts, which upon clos-
er inspection appear ill formed in the sense of being of
mixed origin themselves (e.g., posthumous/longitudinal
compendia, dictionaries, encyclopedias, etc...; see Mate-
rials and Methods and Fig. 6 for more details on corpus
formation and internally-mixed texts). Additionally, we
see from these preliminary experiments that both of the
quantities, b and γ, do not appear as universal for a given
language (see Fig. 2), but rather depend quite severely on
corpus composition. In fact, the only regressed parame-
ter that presents any signs of universality for a language is
Zipf’s exponent, θ, which remains quite close to 1. These
initial results indicate that hypotheses of the locations
of scaling breaks, b, corresponding to language-universal
lexical-core sizes are in strong need of reevaluation, or
should be reformulated as corpus-relative.

In the following, we run text mixing experiments that
measure decay in rates of word introduction directly



3

b
b=Navg

1,000 5,000 10,000 15,000

2,
00
0

4,
00
0

6,
00
0

8,
00
0

Navg

2 6 10
decile

b

Navg

2,
00
0
10
,0
00

2 6 101.
0

1.
4

1.
8

decile

γ

θ

1-
9

0 2,000 4,000 6,000 8,000 10,000

N

10

10,000                     Ebers: 39,417 Webster's: 219,990                        

de
ci
le

FIG. 2: (Top) For each of the 10 deciles of the English
distribution of text sizes, we measure the parameters b,
γ, Navg, and θ from 50-book sample corpora. Each

cloud represents 1, 000 sample corpora from deciles 1–10
(low-to-high from left to right, where red to blue also
indicates increasing decile and fade to green or yellow
indicates increasing density). The line b = Navg is also
presented (dashed line, main axis), and shows that b

increases with decile for all but the most extreme (10th)
decile. Main axes insets show parameter variation

across deciles for both b and Navg (left); and γ and θ
(right), where we note that Zipf’s parameter, θ, is the

only one that exhibits signs of stationarity.
(Bottom) Box plots providing a more detailed look at

the ten deciles of the distribution of text sizes. For
clarity we have separated the plots for deciles 1–9 from
the 10th. This highlights the extreme nature of the later
deciles (most notably the 10th), where the presence of
poorly refined texts throw off estimates of Navg, which

we also note corresponds to the roll over in the
distributions off of the b = Navg axis above.

attributable to mixing texts to predict lower scalings in
composite distributions. As we read out texts (in some
order) let m be the volume of words observed at any
point, and nm be the number of distinct words in the
volume m, which we will refer to as the vocabulary size

Consider the two excerpts from Charles Dickens’
“A Tale of Two Cities”, taken as texts:

T1 : (it, was, the, best, of, times,

it, was, the, worst, of, times), and

T2 : (it, was, the, age, of, wisdom,

it, was, the, age, of, foolishness)

Supposing we read T1 first, the sequence of words is:

(T1, T2) : (it, was, the, best, of, times,

it, was, the, worst, of, times,

it, was, the, age, of, wisdom,

it, was, the, age, of, foolishness)

where we have highlighted initial (growing text) word
appearances in red. The corresponding sequences of val-
ues, m,nm, Nm, αm, Am and αm/Am, are then

m : (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)

nm : (1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 7,

7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10)

Nm : (1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 7,

8, 9, 10, 11, 12, 13, 13, 13, 13, 13, 13, 14)

αm : (1, 1, 1, 1, 1, 1,
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Example 1: A concrete example of the text mixing
effect, where we consider two passages (T1 and T2)

as separate texts that are then mixed. The
similarity of word use between these excerpts

provides an excellent example for understanding
the differences between the growing text, where we

count new word appearances (nm) with the
awareness of previous texts, and the memoryless
text, where we count word appearances (Nm) as
new with each initial appearance in each text.

Note that both αm and Am are simply the
quotients of nm and Nm with m (respectively), and
that their quotient (αm/Am) is equivalent to n/N ,
and is not equal to 1 only when texts are mixed.
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of the growing text. To exhibit the effects of text mixing
we contrast the vocabulary size of the growing text with
the vocabulary size of the memoryless text, Nm, where
we “forget” the words read in all previous texts and con-
tinuing counting appearances of words that were initial in
their text (regardless of appearances in previous texts).
From nm and Nm we then have two proxies for the word
introduction rate, one for the growing text αm = nm/m
and one for the memoryless text Am = Nm/m. We may
consider αm to be the word introduction rate of the com-
posite (which includes mixing effects), and Am to be the
word introduction rate of the individual texts (excluding
mixing effects).

There are many conceivable mechanisms that lead to
a power-law decay in the rate of word introduction. To
measure the severity of scaling breaks we do not need to
know the true values of the word introduction rates, but
instead just their scalings. So, to determine the extent
to which text mixing generates word introduction decay,
we isolate the portion of the scaling that results from
mixing by measuring αm/Am, the portion of word intro-
duction remaining after mixing texts. Note that since
nm ≤ Nm, one has αm ≤ Am, and hence αm/Am ≤ 1
for all m. Hence, this normalized rate behaves as a non-
constant only when mixing ensues, and so any decay mea-
sured via αm/Am implies the presence and is the direct
consequence of text mixing (see Example 1 for an intu-
itive understanding of all text mixing quantities). Since
αm/Am will be the only quantity used in the measure-
ment of word introduction decay, we relax the notation,
and simply write α for αm/Am and n for nm in what
follows.

To test the effects of text mixing, we not only observe
the word introduction rate α(n), but consider its ability
to predict the scalings of rank-frequency distributions.
To do this, we note that by design, the data for α(n)
are aligned with f(r)—both have domain {1, ..., Ncorp}
(where Ncorp is the vocabulary size of the corpus). Fur-
ther, since the theory has γ = θ+µ, we may also observe
that α(n) · n−θ, need only be normalized

p̂(n) =
α(n) · n−θ

C
, where C =

Ncorp∑
1

α(n) · n−θ (4)

to produce a model for the normalized rank-frequency

distribution p(r) = f(r)/
∑Ncorp

1 f(r). To deter-
mine a model’s Zipf scaling, θ, we scan the range
{0.75, 0.751, ..., 1.25} and accept the θ for which p̂ mini-
mizes the sum of squares error

Ncorp∑
1

(log10 p(r)− log10 p̂(r))
2 (5)

over as many as 10, 000 log-spaced ranks.

MATERIALS AND METHODS

In our experiments we work with a subset of the
eBooks [15] collection. We collected those texts which
were annotated sufficiently well to allow for the removal
of meta-data as well as for the parsing of authorship, title,
and language. All together, this resulted in the inclusion
of 23, 309 books from across ten languages (broken down
in Tab. I).

To idealize texts as discussed in Fig. 1 we note that a
resultant rank-frequency distribution from a pure Simon
model of constant word introduction rate, α0, will scale
with Zipf exponent θ = 1− α0, such that N/M → α0 as
the text grows. Therefore, for an observed text of size
N and volume M , we define the idealized Zipf/Simon
exponent as θ0 = 1−N/M , and apply θ0 to the collection
of ranks, r = 1, · · · , N , as

fideal(r) =

⌊( r
N

)−θ0
+

1

2

⌋
, (6)

while preserving their word-labels from the empirical
data.

For all of the rank-frequency distributions analyzed, we
regress over as many as 10, 000 log-spaced ranks (taken
over the range r = 1, ..., N) to determine estimates for
θ, b, and γ. This estimation is done by applying a two-
line least-squares regression, constrained by intersection
at the point of scaling break. Given data points (x, y),
and a point of break, xb, we solve for the model

ŷ =

{
β1 + β2x, : x ≤ xb
β3 + β4x, : x > xb

, (7)

Nbooks Nchar Nmin Nave b Nmax Ncorp

en 19,793 46 5 5,899.3 5,849 219,990 2,836,900

fr 1,360 44 395 8,300.7 17,715 26,171 528,314

fi 505 31 1,144 8,872.6 7,761 31,623 811,742

nl 434 48 133 6,747.1 6,098 82,246 443,816

pt 375 38 203 4,675.8 10,363 17,818 246,497

de 327 30 153 7,554.9 7,259 113,089 477,274

es 223 34 406 8,735.1 15,079 29,452 237,874

it 194 29 1,083 9,388.7 13,954 29,445 258,509

sv 56 34 1,389 7,499.8 5,315 18,726 123,806

el 42 35 2,047 6,414.7 7,613 17,774 110,940

TABLE I: Table of information concerning the data
used from the eBooks database. For each language we
record the number of books (Nbooks); the number of

characters (Nchar), which we take to be the number of
letters [13, 14] (including diacritics and ligatures); the

minimum text size (Nmin); the maximum text size
(Nmax); and the total corpus size (Ncorp). For reference,

we additionally record the regressed point of scaling
break, b.
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constrained by β1 + β2xb = β3 + β4xb, through standard
minimization of the sum of squares error. We compute
this regression for 1, 000 log-spaced points, xb, across the
middle 20–80% of the log r domain. For given distribu-
tion we then perform these 1, 000 regressions and accept
the value b for which we have observed the smallest SSE.

To understand our text mixing results we must note
that there is measurement error for both b and Navg. As
a regressed quantity, this may be expected for b, but for
Navg, the existence of measurement error is less obvi-
ous, and generally results from poor corpus composition.
The main effect stems from the fact that many texts in
the eBooks data set are internally mixed. The longi-
tudinal compendia of individual authors and genres are
the most intuitive and abundant examples of internally
mixed texts, and the most extreme cases are general-
ly reference texts, e.g., dictionaries, encyclopedias, and
textbooks (see Fig. 2). The major point is that when a
compendium is not refined, but taken as an individual
text in a corpus, the calculation of Navg considers only a
single book of large size (wrongly), instead of many books
of smaller size (correctly). Within the English data set
we have found that the large-N texts are generally of this
variety and dominate the 10th decile. Reading down the
top ten N -ranking texts makes this abundantly clear:

1. Webster’s Unabridged Dictionary

2. Diccionario Ingles-Español-Tagalog

3. The Complete Project Gutenberg Works of George
Meredith

4. The Anatomy of Melancholy

5. A Concise Dictionary of Middle English

6. A Pocket Dictionary

7. The Nuttall Encyclopaedia

8. The Complete PG Works of Oliver Wendell
Holmes, Sr.

9. The Complete Historical Romances of Georg Ebers

10. The Complete Project Gutenberg Works of
Galsworthy

Note here that among these compendia and reference
texts lies a two way (Spanish/English) dictionary whose
placement in the top 10 likely results from dual word
forms (English and Spanish translations) of the majority
of words that it possesses. We have explored the impact
of these under-refined and ill-formed texts in detail in
Fig. 2, where we have found a clear association of b with
Navg along the line b = Navg that breaks down in the
larger deciles, where these strange texts occur.

Greek

Swedish

Italian

Spanish

German

Portuguese

Dutch

Finnish

French

English

log10 N
1 2 3 4 5

FIG. 3: Box plots of the base ten logarithm vocabulary
sizes of the texts contained in the 10 eBooks corpora

studied. Center bars indicate means and whiskers
extend to most extremal values up to 1.5 times the
I.Q.R. length, whereupon more extremal values are

plotted as points designated “outliers”.

We also note that Navg is subject to measurement error
from overrefined texts as well, most notably in the Por-
tuguese data set, which has the smallest average text size,
while having the fifth largest number of books (see Tab. I
and Fig. 3). There we note that Portuguese presents
the most significant deviation between Navg and b (b is
notably more than 120% larger than Navg), and more-
over that this deviation is in the expected direction, i.e.,
Navg � b. Note also that this observation is in agree-
ment with those other languages that have Navg � b in
Tab. I (specifically Italian, Spanish, and French), where
in Fig. 3 we see that having many low-N outliers with
no high-N outliers biases the corpus-wide measurement
of Navg.

To estimate µ we perform common least squares linear
regression on the log-transformed data over the region
[Navg, Ncorp], since Navg is generally the point at which
mixing-derived decay becomes clear.

Computation of α(n) involves running many realiza-
tions of the text mixing procedure, randomizing the order
in which the texts are read. To ensure that our measure-
ments are accurate, we adhere to a heuristic—that the
number of text mixing runs be no less than 10 · Nbooks

for the given corpus. The final values used is in our
experiments are computed as averages of the αm/Am
from the more than 10 · Nbooks runs. However, we note
that αm/Am = nm/Nm, where nm ranges with rank:



6

nm = 1, 2, 3, · · · , Ncorp. So, the only quantities that vary
across runs that are necessary to compute α(n) are the
Nm. Hence we take the average as α(nm) = nm/〈Nm〉,
which is in fact the harmonic mean of the α(nm) (the
truest mean for rates).

In our investigation of the different divisions of
the internally mixed corpus, “The complete historical
romances of Georg Ebers,” we have shown how impor-
tant it is to have meaningfully defined texts to be able
to produce an accurate text mixing model for a corpus.
An important component of this exhibition presented the
extremal refinement, where each word is treated indi-
vidually as a separate text (a highly non-realistic sce-
nario). To conduct a text mixing experiment for such a
refinement can be quite computationally taxing, as this
requires taking permutations of the word orders of the
entire corpus. Since this process is entirely independent
of the original word orderings from the corpus, it may
be computed directly from the rank-frequency distribu-
tion via expected gap sizes. In particular, we wish to
determine the average number of previously seen words
appearing between the nth and n+1st “new” words, given
all permutations of the corpus words. Denoting this num-
ber by Mn, we note that the average word introduction
rate over this range is easily found as αn = 1/Mn. We
then define in as the total number of previously-observed
words that were not yet counted by the time the nth new
word was observed, and define jn to be the total number
(out of all corpus words) that were not yet counted by the
time the nth new word was first observed (including those
word types that were not yet observed). Then, if Pn(M)
is the probability that the nth and n + 1st “new” words
were separated by precisely M previously seen words,

Mn =

in∑
M=0

M · Pn(M)

=

in∑
M=0

M · jn − in
jn −M

M−1∏
k=0

in − k
jn − k

(8)

where in the last expression, the product is the probabil-
ity of seeing M consecutive previously-observed words,
with the first factor being the probability that the “new”
word is seen as the M + 1st. These expressions for the
Mn are iteratively computable, and in addition, since
the sums converge quickly, we find that it suffices to take
their first 1, 000 terms for added computational efficiency.

RESULTS AND DISCUSSION

To understand our results we define Nmin, Navg and
Nmax as the minimum, average, and maximum text sizes
(by numbers of unique words) respectively (see Tab. I).
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FIG. 4: The results of text mixing experiments for the
largest, English corpus from the eBooks collection. The

main axes show the empirical, normalized
rank-frequency distribution (black points), p, and the

model determined by text mixing (green points), p̂. The
measured lower and upper exponents, γ and θ, are

depicted in the lower-right and upper-left respectively,
with triangles indicating the measured slopes. We also
present gray boxes in the main axes to highlight the

different mixing regimes, marked by Nchar, Nmin, Navg,
and Nmax (see Materials and Methods and Tab. I for
complete descriptions of these quantities). The lower

left inset shows the point-wise squared error
(p(r)− p̂(r))2, whose sum is minimized in the

transformation of α into p̂. The upper right inset shows
the untransformed rate of word introduction, α (black

points), and the decay exponent µ, which is depicted by
the regressed slope (green dashed line).

These three values obviate four text mixing regimes:

n < Nmin; Zipf/Simon (no mixing)

Nmin ≤ n ≤ Navg; initial (minimal mixing)

Navg ≤ n ≤ Nmax; crossover (partial mixing)

n > Nmax; terminal (full mixing)

In the Zipf/Simon regime we expect the result of an
unperturbed Simon model, though because mixing is also
minimal over the initial regime we expect that behavior
over the first two regimes to more or less be consistent.
Once in the crossover regime, words will on average have
appeared under the effects of text mixing and so there
is the expectation that Navg will mark the macroscopi-
cally observable change in behavior, or scaling break of
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FIG. 5: The results of text mixing experiments for the nine smaller corpora analyzed. All insets, color-coding, and
labels are consistent with those from the larger, English presentation in Fig. 4, whose caption possesses full

descriptions of all axes and plotted data.

the rank-frequency distribution, i.e., we expect b ≈ Navg.
Plotting the two against one another, we have see this
relationship holds across sample corpora from the well-
behaved deciles of the English distribution of text sizes
(see Fig. 2), and breaks down in the presence of ill-formed
texts. Finally, over the terminal regime, all words will
appear in the presence of mixing, and so this regime
exhibits the stabilized second scaling, characterized by

the decay parameter µ.

Our main results from text mixing, comparing the text
mixing-derived model, p̂, with the normalized empirical
rank-frequency data, p, may be found for the English
data set in Fig. 4, and for the nine other languages stud-
ied in Fig. 5. For all 10 languages we observe that the
models defined by text mixing, p̂, produce excellent pre-
dictions of the rank-frequency distributions (Main axes,
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FIG. 6: Text mixing results for a single-author corpus. Here, α was measured for differing refinements of the
Egyptological fiction compendium/text “The complete historical romances of Georg Ebers” into sub-texts. All
insets, color-coding, and labels are consistent with those from the English presentation in Fig. 4, whose caption

possesses full descriptions of all axes and plotted data. (Left) Each series is considered a separate text. (Middle)
Each volume of each series is considered a separate text. (Right) Each word (the extremal refinement, see

Materials and Methods) in the compendium is considered a separate text. Note that in the upper right insets, α
decreases overall with each refinement (as by definition it must), and that there appears to be an optimal refinement

for producing a text mixing model, likely close to the scale of volumes.

Figs. 4 and 5), which is made quite clear by plotting
point-wise squared error (lower-left insets, Figs. 4 and 5).
For each corpus we see a broad range of ranks beginning
not far before 102, and extending into the second scaling
where the error is quite low (disregarding the effect of
the finite-size plateaux).

We also perform text mixing analysis at different scales
for a single, large, and internally mixed text from the
English data set, “The complete historical romances of
Georg Ebers.” It is important to note before interpreting
these results that the text itself is a compendium, com-
bining series’ that were each written by the author over
the course of more than 30 years, writing and publish-
ing volumes independently. With this in mind, the text
offers an important example for text mixing that helps us
to understand several important details. First, that not
all texts are well formed—an individual text such as this
may in of itself present a scaling break that has resulted
from text mixing. Second, that the scaling break of a sin-
gle, large text may be understood through text mixing
analysis. This second point is more difficult observe, as
it requires an appropriate refinement of the internally-
mixed text, i.e., one must be able to break the mixed
text into appropriately independent sub-texts. From our
example in Fig. 6, we can see that the division of the text
into a corpus of 28 series’ (left panel) renders a text mix-
ing model for the empirical data with much higher error
than a division into a corpus of 143 volumes (center pan-
el, a refinement of the series’ division). We also present
text mixing results from the extremal refinement, where

each individual word is treated as a text (right panel,
see Materials and Methods for more information on the
extremal refinement), which shows that a text can be
over-refined to produce a poor text mixing model.

It is worth noting from our results that the parame-
ter, θ, is frequently measured to lie outside the Simon-
productive range, (0, 1). Therefore, we are left to
conclude that individually, many texts are subject to
internally-derived decay in word introduction rates (as
is exemplified by the Ebers text in Fig. 6), i.e., the
underlying rank-frequency distributions are not of pure
Zipf/Simon form (as we suggest in other work [8]), but,
instead, subject to internal mixing. Though we do
not exhaustively investigate the occurrence of internally-
derived decay in the rates of word introduction across the
eBooks data set, it seems quite possible that all of the
texts parsed are subject to some internal mixing effects,
whether from non-original annotation by the Project
Gutenberg e-Text editors, or just the mixing of differing
components (e.g., chapters, series’, volumes, prologues,
etc...). This of course would require that these mixing
effects be of low-impact in the cases generally considered
strong examples Zipf’s law.

We also note a strange behavior (which is captured by
the text mixing model) in the English data set. There, we
have found a relatively shallow lower scaling (γ ≈ 1.65),
but notice that it appears to be one of possibly two low-
er scalings. For English, the crossover regime exhibits
a consistently steeper scaling that dies away in the ter-
minal regime. Though we have no certain explanation
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for this behavior, part of what makes the English col-
lection so different from the others is the sheer number
of texts (see Tab. I). However, upon looking closer at
the distribution of English text sizes, we also notice that
the collection possess some extremely large-N outliers,
In the largest text (which has nearly an order of mag-
nitude more words than any other text)., approximate-
ly one tenth of all words are represented (out of near-
ly 20, 000 books), which must have a profound impact
on the combined rank-frequency distribution, and hence
lower scaling. Further, this large-N hypothesis is sup-
ported by our preliminary investigation (see Fig. 2) where
we observed that those (large) texts in the tenth decile
not only generated scaling break points that went against
the b = Navg correspondence, but also, generated rela-
tively shallow lower scalings, against the trend of steepen-
ing with increasing decile. English is also well-known for
its willingness to adopt foreign words, which may lead to
an increased rate of appearance of low-count loan words.
Regardless of the reasons for this difference with English,
we find that text mixing captures the shape of both low-
er scaling regimes, and so both are well explained by the
text mixing model.

We also take time to make note of and discuss another
anomalous behavior of the rank-frequency distributions
investigated. Upon viewing a rank-frequency distribu-
tion for Zipf’s law, one generally finds a “wobble” of the
frequency data around Zipf’s scaling (regardless of the
existence of a scaling break). We refer to the termina-
tion of this “wobble” as the point of stabilization of the
Zipf/Simon regime. Looking at the empirical data from
the ten languages, we see that this stabilization point
generally appears early on the in Zipf/Simon regime, and
generally not before the first 102 ranks. Though we have
no definitive explanation for the existence of this anoma-
ly, we note upon looking at the pointwise-squared errors
that the stabilization point frequently occurs near each
language’s number of characters, Nchar (depicted as a
red dotted vertical line in each of the lower left insets of
Figs. 4, 5, and the center panel of 6). Whether the num-
bers of characters spawned in the generation of primor-
dial, character-based languages still influence the shapes
of rank-frequency distributions of descendant languages
today, we cannot say for sure. However this anomalous
regime appears consistently across languages, and may
potentially be of consistent shape across the corpora of a
language. If so, we might view such anomalies as univer-
sal properties of languages, and so highlight them in the
hopes of opening a broader discussion.

In light of the results presented, we take time to consid-
er the validity of the core language hypothesis. We have
seen significant variation in both the location and sever-
ity of scaling breaks both across and within languages.
Upon sampling the English corpus by deciles, we have
observed that the regressed point of scaling break, b, is
not stationary (see Fig. 2). We take this as indication of

the lack of validity of and language-universal core/non-
core hypothesis, as a core should exhibit a strong consis-
tency of size. Moreover, languages closely related via a
common, recent ancestor should likewise exhibit this con-
sistency, but notably two of the languages most closely
related in the study, Spanish and Portuguese, present a
large difference in b, (10, 363 for Spanish, and 15, 079 for
Portuguese—see Tab. I). Both of these results seem to
indicate that scaling breaks in rank-frequency distribu-
tions are likely consequences of text and corpus composi-
tion. Hence, it may then be more reasonable to consider
a language core as a collection of words necessary for
basic description, but not overlapping in use or meaning.
However, such a core lexicon would need be determined
by native practitioners, and not necessarily be an observ-
able property of rank-frequency distributions. Alterna-
tively, one could consider a corpus-core by it’s collection
of words common to it’s texts. However, such a “common
core” would be entirely dependent on the composition of
the corpus, and hence not a universal property of a lan-
guage proper.
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tive Linguistics 8, 165 (2001).

[4] M. A. Montemurro, Physica A: Statistical Mechanics and
Its Applications 300, 567 (2001).

[5] M. Gerlach and E. G. Altmann, Phys. Rev. X 3 (2013).
[6] J. Kwapien, S. Drozdz, and A. Orczyk, Acta Physica

Polonica, A. 117, 716 (2010).
[7] A. M. Petersen, J. Tenenbaum, S. Havlin, H. E. Stanley,

and M. Perc, Scientific Reports 2 (2012).
[8] J. R. Williams, P. R. Lessard, S. Desu, E. M. Clark,

J. P. Bagrow, C. M. Danforth, and P. S. Dodds, CoRR
abs/1406.5181 (2014), URL http://arxiv.org/abs/

1406.5181.
[9] H. A. Simon, Biometrika 42, 425 (1955).

[10] G. U. Yule, Phil. Trans. B 213, 21 (1924).
[11] A. L. Barabási and R. Albert, Science 286, 509 (1999).
[12] P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123

(2001).
[13] https://en.wikipedia.org/wiki/Latin_alphabets;

Accessed November 1, 2014.
[14] https://en.wikipedia.org/wiki/Greek_alphabet;

Accessed November 1, 2014.
[15] http://www.gutenberg.org; Accessed July 1, 2014.

mailto:jake.williams@uvm.edu
mailto:james.bagrow@uvm.edu
mailto:chris.danforth@uvm.edu
mailto:peter.dodds@uvm.edu
http://arxiv.org/abs/1406.5181
http://arxiv.org/abs/1406.5181
https://en.wikipedia.org/wiki/Latin_alphabets
https://en.wikipedia.org/wiki/Greek_alphabet
http://www.gutenberg.org

	 Zipf's law and (non) universality
	 Stochastic models
	 Text mixing
	 Materials and methods
	 Results and discussion
	 References

