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S1 GitHub popularity

Since roughly 2011 GitHub has become the predominant online platform for developing and hosting open
source software and other projects. Competitors such as Sourceforge have been left behind. Figure S1
shows the Google search volume for GitHub and its competitors, as gathered from Google Trends (https:
//www.google.com/trends/).

S2 Statistical analysis of team and success distributions

The empirical distributions of team size P(M), number of teams per person P(k), and success P(S ) all appear
to be heavy-tailed (Main text Fig. 1). All three empirical distributions are integer-valued, so we use discrete
fits. We present complementary cumulative distributions (P>(X)) so as to avoid the need to bin the data,
which may influence its appearance in a plot.
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Figure S1: GitHub is becoming the dominant platform for
open development and collaboration. Google trends (normal-
ized) search volume over time for searches “GitHub”, “Source-
forge”, and “Google Code”. This trend data serves as a proxy
for popularity.

Here we fit to these data three model for heavy-tailed distributions:

Power Law (PL): P(x) ∼ x−α ∀ x ≥ xmin (S1)

Log-normal (LN): P(x) =
1

x
√

2πσ
e−

(ln x−µ)2

2σ2 (S2)

Truncated Power Law (TPL): P(x) ∼ x−α e−x/xcut (S3)

Note that the TPL is a nested distribution, becoming equivalent to the PL when xcut → ∞.
The empirical fitting procedure used allows us to estimate both the power law tail exponent α and the

power law cutoff xmin [1, 2, 3]. We fit the three models to the data both with the estimated xmin from their
procedure and to the entire dataset by forcing xmin = 1. Best fit parameters are given in the legends of the
respective figures: Figs. S2, S3, and S4.

We compare the distributions using likelihood ratio tests (LRT). This does not confirm one distribution
as being correct, but it does allow us to say if one distribution is more likely than another, or if they are
statistically indistinguishable.

Team size (Fig. S2) The full P(M) is better explained by either the LN or TPL than the PL. These two
distributions are both equally likely (LRT, p > 0.15). The tail of the team size distribution (xmin ≥ 7) is well
explained by all three models (LRT, p > 0.2). We conclude that M follows a mixed distribution but is likely
to have a pure PL tail.

Number of teams per person (Fig. S3) The distribution of team membership, the number of teams k a
person belongs to, is better explained by the LN than either the PL or TPL distributions. This holds for the
full data (LRT, p < 10−33) and for the xmin tail (LRT, p < 0.04). We conclude that P(k) is more likely to
follow LN than PL or TPL.

Success (Fig. S4) The distribution of success P(S ), or the number of GitHub users who have “book-
marked” a team’s project. We find, according to the applied fitting procedure, that a TPL model is signif-
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Figure S2: Best fit distributions for team size. (A) The full dataset is better explained by either the log-normal or the truncated
power law than the pure power law (likelihood ratio test, p < 10−10). The truncated power law and the log-normal models are
equally likely (likelihood ratio test, p > 0.15). (B) In the tail of the data all three models are equally likely (Likelihood ratio test,
p > 0.22) Since the truncated power law has such a large xcut compared to the values of M, we conclude that it is equivalent to the
pure power law.
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Figure S3: Best fit distributions for number of teams per user. Both the full distribution and the tail (k > xmin) are poorly
explained by the power law model. The log-normal model is more likely than the truncated power law in both sets of data, although
the significance is relatively weak for the tail (likelihood ratio test, p < 10−33 in the full data, p < 0.04 for the tail data).

icantly more likely than a PL or LN (LRT, p < 10−81). (As the tail cutoff was small, xmin = 2, we only
present fits to the tail.)

S3 The distribution of workload across team members

Figure S5A shows how the total workload (number of pushes) of teams grows with team size M, meaning
larger teams are more active in total. This makes sense. The inset shows how the fraction of total work done
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Figure S4: Best fit distributions for success. The truncated
power law distribution is significantly more likely than the pure
power law or log-normal distribution (likelihood ratio test, p <
10−81). As the estimated tail cutoff was small (xmin = 2) we only
present fits to this region.
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Figure S5: Larger teams are more active but all teams distribute work the same way. (A) The total work (total number of
pushes) grows with team size, on average. (Inset) The average fraction of work done by the lead decreases with team size, but on
average remains well above the lower bound 1/M. (B) The average work per team member decreases as team size grows. The
ten curves correspond to the deciles of the total work distribution. The functional form is identical for each decile, except perhaps
the highest decile which decays slightly more slowly with M, indicating that the way in which work is distributed over a team is
independent of the total activity of that team.

by the lead (w1/W) decreases on average as team size grows. The lower bound 1/M is almost never reached,
indicating that workloads remain “front-loaded” for all team sizes.

Figure S5B shows how the average workload per team member decreases as teams grow. The ten curves
correspond to a decile of the total workload distribution. They all follow the same functional form, except
possibly the highest decile which decays slightly less. This indicates that the distribution of workload across
team members is independent of total workload; more active teams distribute their workloads across their
members in the same manner as less active teams.
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Figure S6: Experience weakly correlates with success. (A) Top teams have higher experience than average teams, but only for
team sizes M < 7. (B) As experience grows, success grows on average, but the change in S is quite weak, compared to that of
diversity and number of lead members (main text). Linear and nonlinear models indicate that the effects of E are entirely due to the
other quantities.

S4 Experience is weakly related to team success

One of the quantities we used to understand a team is their experience E, defined as the average number of
other teams that members of the team belong to. We found in the main text that E and S are significantly
correlated by themselves, but that E is not significant when including the other variables total team size,
effective team size, diversity of experience, and number of lead members. This was shown using both a
linear model and a nonlinear technique known as Symbolic Regression.

Here we further underscore these results. In Fig. S6A we find that top teams have significantly higher
experience than average teams, but this distinction disappears for M ≥ 7. Figure S6B shows how E and S
relate directly, independent of other quantities. We do see a significant increase in S as E grows, but the
change in S is far smaller in magnitude than that of diversity D or number of leads L (shown in the main
text). Moreover this effect is confounded with team size, and larger teams may even show a decrease in
success as experience grows, although there are insufficient statistics to conclude a trend exists.

S5 Median success vs. team size

In the main text we computed the mean success against various other quantities. Since success is broadly
distributed, we removed the top 1% highest success teams from these averages, to mitigate the influence of
outliers on the average. Alternatively, we could take the median of success, which is robust against such
small outlier effects. We show this in Fig. S7. The median shows the same trend as the mean, although it is
highly discretized since most teams have success S < 20.
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Figure S7: Larger teams have higher median success.
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Figure S8: The Pareto Front of optimum equations for given
complexities. The point corresponding to the best overall equa-
tion is highlighted.

S6 Symbolic regression

In addition to the traditional linear regression model presented in the main text, we also use a new nonlinear
modeling technique known as Symbolic Regression (SR) [4, 5]. SR helps us find equations y = f (x1, x2, . . .)
without necessarily giving an explicit functional form for f . This makes it a generalization of both linear
and non-linear regression techniques.

We used the Eureqa SR package [5] on our team data to find families of functions of the form S =

f (M,m,W, E,D, L). Eureqa finds the set of lowest error functions at given complexities, forming a Pareto
Front of solutions [4]. Running Eureqa with its default settings on our data, we found 25 functions. A plot
of the Pareto front is shown in Fig. S8. The distributions of how many times each variable occurs in each
equation is given in Fig. S9. The equations themselves are listed below. (The overall best fit equation is
Eq. (S10).)

We find good support for the same conclusions of our linear model. Experience E does not appear in
any of the discovered models. Moreover, to determine whether an increase in one variable (such as M or
m) causes a positive or negative change in S , we perform a variable sensitivity study (below). This study
again supports the results of the linear model. Increasing M, D, and L almost always increases S , whereas
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Figure S9: The distribution of variables per equation. There are 25 models total. The left plot counts how many of them contain
a particular variable at least once. The right plot counts the total number of occurrences of each variable. Success S must appear
exactly once in each equation (on the LHS), so it has value 25. Both D and L appear more than once in equations, with D appearing
2.52 times per equation, on average, and L appearing 2.36 times. Experience E never appears in any model, matching the fact that
it was not significant in the linear regression model.

increasing m almost always decreases S . Thus large, diversely experienced, focused teams tend to have the
highest success.

S6.1 Variable Sensitivity Study

This section details the complexities and accuracies of the model equations found by Eureqa, as well as the
sensitivity of these equations to changes in their variables. This report was generated by the Eureqa 0.99.9
Beta (build 4352) software.

(The best overall equation, according to Eureqa’s measure on the tradeoff between complexity and ac-
curacy, is Eq. (S10).)

Explanation of terms:

Sensitivity: The relative impact within this model that a variable has on the target variable.

% Positive: The likelihood that increasing this variable will increase the target variable. If % positive
= 70%, then 70% of the time increases in this variable lead to increases in the target variable (but the
remaining 30% of the time it either decreases it or has no impact). If % positive = 0%, increases in this
variable will not increase the target variable.

Positive Magnitude: When increases in this variable lead to increases in the target variable, this is
generally how big the positive impact is.

% Negative: The likelihood that increasing this variable will decrease the target variable. If % negative
= 60%, then 60% of the time increases in this variable lead to decreases in the target variable (but the
remaining 40% of the time it either increases it or has no impact). If % negative = 0%, increases in this
variable will not decrease the target variable.

Negative Magnitude: When increases in this variable lead to decreases in the target variable, this is
generally how big the negative impact is.
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Details: Given a model equation of the form z = f (x, y, . . .), the influence metrics of x on z are defined as
follows:

Sensitivity:
∣∣∣ ∂z
∂x

∣∣∣ · σ(x)
σ(z) , evaluated at all input data points;

% Positive: The percent of data points where ∂z
∂x > 0;

% Negative: The percent of data points where ∂z
∂x < 0;

Positive magnitude:
∣∣∣ ∂z
∂x

∣∣∣ · σ(x)
σ(z) , at all points where ∂z

∂x > 0;

Negative magnitude:
∣∣∣ ∂z
∂x

∣∣∣ · σ(x)
σ(z) , at all points where ∂z

∂x < 0;

where ∂z
∂x is the partial derivative of z with respect to x, σ(x) is the standard deviation of x in the input data,

σ(z) is the standard deviation of z, |x| denotes the absolute value of x, and x denotes the mean of x.

S = 0.00086313L2.963DW − 0.090191L2.963D +
1
m

(
1.1705M−0.56145D3.5035DL3.4195D

+ M
)

(S4)

Complexity = 106

Absolute Error = 23.404200

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.50409 100% 0.50409 0% 0
m 0.38949 0% 0 100% 0.38949
M 0.34811 100% 0.34811 0% 0
D 0.33048 96% 0.34244 4% 0.010864
W 0.056825 100% 0.056825 0% 0

S = 0.00086858L2.9785DW − 0.09076L2.9785D +
1
m

(
1.1848M−0.57673D3.2116DL3.2856D + M

)
(S5)

Complexity = 48

Absolute Error = 23.405300

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.47639 100% 0.47639 0% 0
m 0.38147 0% 0 100% 0.38147
M 0.34609 100% 0.34609 0% 0
D 0.31481 97% 0.32551 3% 0.010681
W 0.056258 100% 0.056258 0% 0

S = 0.00086817L2.9971DW − 0.090717L2.9971D +
1
m

(
D3.5411DL3.303DM0.5 + M

)
(S6)

Complexity = 44

Absolute Error = 23.407800
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Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.51542 100% 0.51542 0% 0
M 0.46004 100% 0.46004 0% 0
m 0.42114 0% 0 100% 0.42114
D 0.36405 97% 0.37649 3% 0.011786
W 0.063722 100% 0.063722 0% 0

S = 0.00083731L3.0424DW − 0.087492L3.0424D +
1
m

(
1.1725M−0.62723DL2.9285D + M

)
(S7)

Complexity = 40

Absolute Error = 23.409000

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.52306 100% 0.52306 0% 0
m 0.46692 0% 0 100% 0.46692
M 0.4168 100% 0.4168 0% 0
D 0.2472 100% 0.2472 0% 0
W 0.068029 100% 0.068029 0% 0

S = 0.00086313L3.0311DW − 0.090191L3.0311D +
1
m

(
1.0822MDL3.1701D + M

)
(S8)

Complexity = 38

Absolute Error = 23.410400

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.61212 100% 0.61227 0% 0.00084022
m 0.50192 0% 0 100% 0.50192
M 0.39633 100% 0.39633 0% 0
D 0.26478 100% 0.26478 0% 0
W 0.074642 100% 0.074642 0% 0

S = 0.00086817L3.0339DW − 0.090717L3.0339D +
1
m

(
1.0606DL3.4478D + M

)
(S9)

Complexity = 32

Absolute Error = 23.412800

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.67506 100% 0.67575 0% 0.0012525
m 0.51434 0% 0 100% 0.51434
M 0.36037 100% 0.36037 0% 0
D 0.27647 100% 0.27647 0% 0
W 0.077665 100% 0.077665 0% 0
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S = 0.00086817L3.0321DW − 0.090717L3.0321D +
1
m

(
DL3.5006D + M

)
(S10)

Complexity = 30

Absolute Error = 23.414000

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.64634 100% 0.64711 0% 0.0012379
m 0.49821 0% 0 100% 0.49821
M 0.35758 100% 0.35758 0% 0
D 0.27078 100% 0.27078 0% 0
W 0.076992 100% 0.076992 0% 0

S = 0.00083712L3.0861DW − 0.087472L3.0861D +
1
m

(
L3.0863D + M

)
(S11)

Complexity = 28

Absolute Error = 23.421000

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.70447 100% 0.70447 0% 0
m 0.60966 0% 0 100% 0.60966
M 0.43345 100% 0.43345 0% 0
D 0.18037 18% 0.97783 0% 0
W 0.092313 100% 0.092313 0% 0

S = 0.00094168L3.0422DW − 0.098398L3.0422D +
1
m

(
1.1008DL2 + M

)
(S12)

Complexity = 26

Absolute Error = 23.428900

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
m 0.80679 0% 0 100% 0.80679
L 0.66859 100% 0.66861 0% 0.15262
M 0.59982 100% 0.59982 0% 0
D 0.19448 100% 0.19432 0% 0.28059
W 0.14074 100% 0.14074 0% 0

S =
2.0512D

m
LM + 0.0007675L3.1623DW − 0.080198L3.1623D (S13)

Complexity = 24

Absolute Error = 23.429400
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Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
M 0.92419 100% 0.92419 0% 0
m 0.6244 0% 0 100% 0.6244
L 0.52968 100% 0.52968 0% 0.17883
D 0.29889 100% 0.29886 0% 0.53101
W 0.089784 100% 0.089784 0% 0

S = 2.0569DL + 0.00072728L3.2045DW − 0.075995L3.2045D + M − m (S14)

Complexity = 23

Absolute Error = 23.439700

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
M 0.70532 100% 0.70532 0% 0
L 0.61753 100% 0.61757 0% 0.18733
m 0.40931 0% 0 100% 0.40931
D 0.30963 100% 0.30953 0% 0.52775
W 0.11459 100% 0.11459 0% 0

S = 0.00073349L3.2053DW − 0.076643L3.2053D +
1
m

(D + LM) (S15)

Complexity = 22

Absolute Error = 23.445800

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
m 0.68988 0% 0 100% 0.68988
M 0.60299 100% 0.60299 0% 0
L 0.37671 100% 0.37678 0% 0.11478
D 0.11739 95% 0.11806 5% 0.10395
W 0.10301 100% 0.10301 0% 0

S = L +
1
m

(
L + 0.0009206L4.0335DW − 0.096195L4.0335D

)
(S16)

Complexity = 20

Absolute Error = 23.450800

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.44438 100% 0.44482 0% 0.17098
m 0.24286 0% 0.084319 100% 0.24312
W 0.089414 100% 0.089414 0% 0
D 0.056473 7% 0.67228 11% 0.078402
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S = DL + L + 0.00091119L3.0604DW − 0.095213L3.0604D (S17)

Complexity = 19

Absolute Error = 23.462800

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.70835 100% 0.7084 0% 0.16293
D 0.18624 100% 0.18588 0% 0.27669
W 0.14558 100% 0.14558 0% 0

S = D + L + 0.0010251L3.0304DW − 0.10712L3.0304D (S18)

Complexity = 17

Absolute Error = 23.473900

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.42938 100% 0.42984 0% 0.13934
D 0.18274 98% 0.18181 2% 0.21919
W 0.17992 100% 0.17992 0% 0

S = 0.0014928LW − 0.15599L + 0.79229eDL (S19)

Complexity = 15

Absolute Error = 23.482900

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.22823 100% 0.22823 0% 0.0011273
D 0.16673 100% 0.16673 0% 0
W 0.038473 100% 0.038473 0% 0

S = 0.0018278W + 0.80776eDL − 0.19099 (S20)

Complexity = 13

Absolute Error = 23.506200

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.2308 100% 0.2308 0% 0
D 0.16862 100% 0.16862 0% 0
W 0.036139 100% 0.036139 0% 0

S = eDL −
0.71828

M
(S21)

Complexity = 12

Absolute Error = 23.538200
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Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.23073 100% 0.23073 0% 0
D 0.16856 100% 0.16856 0% 0
M 0.081472 100% 0.081472 0% 0

S = −D + eDL + 0.28172 (S22)

Complexity = 11

Absolute Error = 23.540700

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.23133 100% 0.23133 0% 0
D 0.14482 100% 0.14482 0% 0

S =
2.0D

m
LM (S23)

Complexity = 10

Absolute Error = 23.549400

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
M 1.2657 100% 1.2657 0% 0
m 0.85515 0% 0 100% 0.85515
L 0.71957 100% 0.71957 0% 0
D 0.3732 100% 0.3732 0% 0

S = L + (DL)! (S24)

Complexity = 9

Absolute Error = 23.555200

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
D 0.033094 95% 0.034694 5% 0.00065118
L 0.032843 100% 0.032843 0% 0

S = D +
LM
m

(S25)

Complexity = 8

Absolute Error = 23.570900

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
M 0.86537 100% 0.86537 0% 0
m 0.61724 0% 0 100% 0.61724
L 0.53289 100% 0.53289 0% 0
D 0.13195 100% 0.13195 0% 0
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S = eDL (S26)

Complexity = 7

Absolute Error = 23.583400

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 0.2315 100% 0.2315 0% 0
D 0.16912 100% 0.16912 0% 0

S = 2.0L (S27)

Complexity = 3

Absolute Error = 23.615700

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
L 1 100% 1 0% 0

S = 2.0 (S28)

Complexity = 1

Absolute Error = 23.715800

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude
This model contains no variable references.
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