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Glossary

Emergency An unexpected and often danger-
ous situation, typically affecting multiple
individuals and requiring immediate action

Social and Communication Networks Net-
works of people interacting with each other
through web-based (e.g., Twitter) and mobile-
based (e.g., mobile phone) technologies

Social Media Web-based tools that enable peo-
ple to communicate and interact with each oth-
er in various media forms including text and
multimedia. Examples of these tools include
emails, instant messengers (IM), blogs, mi-
croblogs (e.g., Twitter), vlogs (e.g., YouTube),
podcasts, forum, wikis, social news (e.g., Dig-
g), social bookmarking (e.g., Delicious), and
social networks (e.g., Facebook, MySpace,
and LinkedIn)

Definition

Modern datasets derived from telecommunica-
tion technologies such as online social media and
mobile phone systems offer a great potential to
understand the behaviors of large populations
during emergencies and disasters. This entry
reviews recent studies using large-scale, modern
data to understand emergency and disaster re-
sponse, covering work focused on social network
activity during earthquakes and disease outbreaks
and mobile phone communications following
bombing and other emergency events. The key
techniques and research trends are also discussed.

Introduction

Large-scale emergencies and disasters are an
ever-present threat to human society. With
growing populations and looming threat of global
climate change, the numbers of people at risk
will continue to grow. Thus there is a great
need to optimize response efforts from search
and rescue to food and resource disbursement.
Human dynamics research offers a promising
avenue to understand the behaviors of large

populations, and modern datasets derived from
cutting-edge telecommunications such as online
social media and pervasive mobile phone systems
bring a wealth of potential new information. Such
massive data offers a promising complement to
existing research efforts in disaster sociology,
which primarily focus on eyewitness interviews,
surveys, and other in-depth but small-scale data
(Rodríguez et al. 2006).

Yet most current human dynamics research is
focused primarily on data collected under nor-
mal circumstances, capturing baseline activity
patterns. Here we review a number of studies
pushing the envelope of modern data into the
realm of unexpected deviations in these popu-
lation behaviors. We discuss research focused
on massive datasets from social network activi-
ty during earthquakes and disease outbreaks to
mobile phone communications following bomb-
ings, power outages, and more.

We review a number of recent studies using
large-scale, modern data to understand emergen-
cy and disaster response. We begin with a re-
view quantifying how expectations of communi-
cation in today’s world may influence our per-
ception of the severity of an emergency. We
then cover works focused on social media and
mobile phones. These works use Twitter, a promi-
nent online social media service, to understand
more about disease outbreaks and the impact of
earthquakes. The mobile phone studies feature a
number of emergencies, including earthquakes,
bombings, and a plane crash. The results of these
studies have the potential to revolutionize disaster
response in the future, with the critical goal of
saving lives.

Historical Background

Connectivity and information access through
global telecommunications have become in-
creasingly pervasive due to modern technologies
such as mobile phones and the Internet. People
are becoming increasingly reliant on these
communication modes and so an important
question asked by Sheetz et al. (2010) is as
follows: what do people expect about their
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access to these communication channels when
an emergency occurs? They explored how
the expectation of the availability of these
communication technologies may influence
their perceptions of how they would use these
technologies during and after a crisis.

To answer this question, the authors conducted
online surveys and follow-up interviews with
Virginia Tech students, faculty, and staff (partic-
ipants). This university suffered a tragic attack
on April 16, 2007, and the authors reported that
local cellular networks were overwhelmed by
traffic. Surveying witnesses and survivors at the
university allows the authors to study how the
perceptions of information access meshed with
the unfortunate events that occurred.

Through these surveys and interviews, they
found that participants have a range of expecta-
tions for connectedness in normal activities. Most
participants did not expect to be able to immedi-
ately contact someone. This held even for strong
social ties, for example, a student trying to reach
his or her parents. Most importantly, the authors
discovered that participants who do have high
expectations of connectivity (and also tend to be
more extroverted individuals) were more likely
to report problems with connectivity than users
with lesser expectations. These problems can lead
these people to form overestimate of the severity
of the crisis, compared with individuals who have
lower expectations for their communication and
are thus less likely to find communication loss a
cause for concern. This means that an individual’s
personal traits may directly influence how he or
she estimates the severity of a crisis.

While the authors admitted that they had
a small sample size and that their interview
methods may not be perfect, this study is an
important step towards further understanding the
interplay between modern telecommunications
and emergency events.

Emergencies and Social Media

Today, social media such as Twitter and Facebook
have been popularly used as everyday commu-
nication tools. Millions of people use “tweets”

or Facebook “statuses” to inform family, friend-
s, colleagues, or any others about information,
opinion, and emotions about events just hap-
pening, leading to the great potential of using
social media for monitoring and rescue purposes.
Twitter allows users to send and receive tweets
(140-character messages) via text messages and
Internet-enabled devices, providing the public
with detailed anecdotal information about their
surroundings. Given the real-time nature of Twit-
ter and the emerging social networking technolo-
gies, social media has the potential to fundamen-
tally alter our discussions of emergencies. We
briefly review some of the recent work on detect-
ing disease outbreaks and earthquake response
with Twitter.

Twitter and Disease Outbreaks
Various studies have shown the potential of us-
ing Twitter data to monitor the current public
health status of a population, as people often
tweet when they feel ill or recognize disease
symptoms. Quincey and Kostkova (2010) collect-
ed tweets that contained instances of the keyword
“flu” in a week during the swine flu pandemic.
Their study suggests that the copresence of other
words in tweets can be used by public health
authorities to gather information regarding dis-
ease activity, early warning, and infectious dis-
ease outbreak. For example, in the majority of the
collected tweets, the word “swine” was present
along with “flu”; the words “have flu” and “has
flu” may indicate that the tweet contains infor-
mation about the users or someone else having
flu. The words “confirmed” and “case(s)” perhaps
indicate a number of tweets that are publicizing
“confirmed cases of swine flu.” Culotta (2010)
collected over 500,000 influenza-related tweet-
s during 10 weeks and analyzed the correla-
tion between these messages and the Centers for
Disease Control and Prevention (CDC) statistics.
The paper reported a correlation of 0.78 by lever-
aging a document classifier. Chew and Eysenbach
(2010) collected over 2 million tweets containing
the keywords “H1N1,” “swine flu,” and “swinflu”
within 8 months in 2009. Using manual and
automated content coding, they found temporal
correlation of Twitter activity with major news
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stories and H1N1 incidence data. In addition,
they found that the majority of these tweets con-
tained resource-related posts (e.g., links to news
websites). Gomide et al. (2011) analyzed how
the dengue outbreaks in 2009 were mentioned
on Twitter. Using a linear regression model, they
showed promising results to predict the num-
ber of dengue cases by leveraging tweet con-
tent and spatiotemporal information. Signorini
et al. (2011) tracked time-evolving public senti-
ments about H1N1 or swine flu and studied the
probability of using Twitter stream for real-time
estimation of weekly influenza-like illness (ILI)
statistics generated by CDC.

There has also been work addressing the
technical challenges of collecting tweets that
are related to health or disease. Zamite et al.
(2011) proposed a system architecture for
collecting and integrating epidemiological data
based on the principles of interoperability and
modularity. Prier et al. (2011) proposed using
a Latent Dirichlet Allocation (LDA) model
to effectively identify health-related topics
in Twitter. Paul and Dredze (2011) collected
two billion tweets related to illness, disease
symptoms, and treatment from May 2009 to
October 2010. They proposed a probabilistic
aspect model to separate tweets related to health
from unrelated tweets. Aramaki et al. (2011)
collected 300 million tweets from 2008 to 2010.
They applied the Support Vector Machines
(SVMs) to find tweets related to influenza with a
correlation of 0.89% compared with Google Flu
Trends (Ginsberg et al. 2008). These tools offer
the means to transform the overwhelming flood
of big data into more manageable information.

Besides social media, there are also other
solutions to estimate a population’s health from
Internet activity, most notably Google Flu Trends
service, which correlates search term frequen-
cy with influenza statistics reported by the CD-
C (Ginsberg et al. 2008).

Twitter and Earthquakes
In recent years, tremendous effort has been made
towards leveraging Twitter to study earthquakes,
mainly falling into two lines of research:

real-time detection (Sakaki et al. 2010; Guy et al.
2010; Earle et al. 2012) and crisis management
(Hughes and Palen 2009; Caragea et al. 2011; Li
and Rao 2010; Mendoza et al. 2010).

Early earthquake detection and the delivery of
timely alerts is an extremely challenging task.
Depending on peculiarities of the earthquake,
from size to location, alerts may take between 2
and 20min to publish, owing to the propagation
time of seismic energy from the epicenter to
seismometers and the latencies in data collection
and validation. Therefore, it has been practical-
ly impossible for affected populations to know
about an earthquake before it arrives. This situa-
tion is changing, however, thanks to the pervasive
use of Twitter. Users submit their tweets via
text messages and Internet-enabled devices, and
these messages are available to their followers
and the public within seconds, making Twitter
an ideal environment for the dissemination of
breaking news to large populations. Therefore, by
using populations as social sensors, Twitter may
be a viable tool for rapid assessment, reporting,
and potentially real-time detection of a hazard
event. Sakaki et al. (2010) investigated events
such as earthquakes and typhoons in Twitter and
proposed an algorithm to monitor tweets and to
detect earthquakes. They extracted features such
as keywords in a tweet by semantic analysis and
used Support Vector Machines (SVMs) to classi-
fy a tweet into a positive or negative class. By re-
garding a tweet as a social sensor associated with
location information, the authors transformed the
earthquake detection problem into an object de-
tection problem in ubiquitous and pervasive com-
puting. They derived a probabilistic model by
applying Kalman filtering and particle filtering
to estimate the epicenter of an earthquake and
the trajectories of a typhoon. They then deployed
an earthquake reporting system in Japan, which
delivers earthquake notifications to their users
faster than the announcements broadcast by Japan
Meteorological Agency. Meanwhile, researchers
from the US Geological Survey (USGS) reported
an earthquake detection system that adopts so-
cial network technologies, called Twitter Earth-
quake Detector (TED) (Guy et al. 2010; Earle
et al. 2012). They downloaded tweets that con-
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tain the words “earthquake,” “gempa,” “temblor,”
“terremoto,” or “sismo” from August to the end
of November 2009. Based on tweet-frequency
time series, they used a short-term-average, long-
term-average algorithm to identify earthquakes,
finding 48 earthquakes around the globe with
only 2 false triggers in 5 months of data. The
detections are faster than seismographic detec-
tions, with 75% occurring within 2 min. These
results demonstrate the efficiency of using Twitter
as a detection tool, potentially achieving better
and more accurate results when combined with
existing systems.

The rich semantics of tweets and Twitter’s
broadcasting nature also hint at the potential of
using Twitter for rapid emergency response tools
to assist in intervention and crisis management.
Caragea et al. developed a reusable informa-
tion technology infrastructure, called Enhanced
Messaging for the Emergency Response Sector
(EMERSE) Caragea et al. (2011). The system
is aimed at classifying tweets and text messages
automatically, together with the ability to de-
liver relevant information to relief workers. E-
MERSE has four components, including an i-
Phone application, a Twitter crawler, machine
translation, and automatic message classification.
The system analyzed the information about the
Haiti earthquake relief and provided their output
to NGOs, relief workers, and victims and their
friends and relatives in Haiti. To use Twitter as
an emergency response tool, it is important to
assess the information quality of tweets during
an emergency situation. Li and Rao (2010) stud-
ied Twitter usage following the Sichuan earth-
quake in China in 2008. They focused on five
information quality dimensions: timeliness, ac-
cessibility, accuracy, completeness, and collec-
tive intelligence, arguing that Twitter is an effec-
tive tool for information dissemination in critical
moments following earthquake and its broadcast-
ing nature plays an important role in emergency
response. Mendoza et al. (2010) studied the dis-
semination of false rumors and confirmed news
following 2010 Chile earthquake, finding that
false rumors tend to be questioned much more
than confirmed news. Their study indicates the

possibility of using Twitter to detect rumors after
an earthquake to make the rescue efforts more
efficient.

Emergencies andMobile Phones

In addition to social media websites, the perva-
sive adoption of mobile phones provides another
potentially even more detailed avenue to monitor
large populations. Mobile phone records usually
include fine-grained longitudinal mobility traces
and communication logs. The data allows greater
opportunity to study personal social networks
through their relationship with physical space,
compared to the online social networks (e.g.,
“friends” and “followers” on Twitter). Mobile
phones are well established in many areas, even
in third world countries such as Rwanda (Kapoor
et al. 2010). Leveraging their presence to assist
in emergency response has great potential to save
lives. Here we review two recent papers focused
on mobile phones and emergencies. The first
studied an earthquake that occurred in central
Africa (Kapoor et al. 2010). The second analyzed
a corpus of events including non-emergency con-
trols such as music festivals occurring in Western
Europe (Bagrow et al. 2011).

An Earthquake in Central Africa
To understand how effective mobile phones are
at understanding emergency situations, a number
of studies have been conducted. Kapoor et al.
(2010) studied a 5.9 magnitude earthquake that
occurred February 3, 2008, in Lake Kivu region
of the Democratic Republic of Congo Kapoor
et al. (2010). The dataset is the cellular activity
patterns of mobile phone users in Rwanda. They
used daily call volume on a per tower basis, and
they also had the geographic coordinates of the
towers. Their goal was to determine the location
of the epicenter algorithmically using only the
cellular data and to assess or predict what areas
of the country are most in need of aid due to the
earthquake.

To study these problems, they assumed that
(i) cell tower traffic deviates in a statistically
significant manner from normal activity levels
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and trends when an event occurs, (ii) areas that
are more disturbed by the event will display
traffic deviations for longer periods of time, and
(iii) disruptions are inversely proportional to the
distance from the catastrophe.

To detect an event they assumed the typical
daily traffic on a tower obeys a gaussian distri-
bution and they used a negative log-likelihood
score to compare the current traffic with this
distribution. The higher this score, the more likely
there was an anomalous event on that day. They
demonstrated that this score spikes on the day
of the event, although they did not discuss a
specific algorithm to automatically flag scores
(e.g., introducing a threshold score such that an
event is anomalous when its score exceeds that
threshold).

To estimate the location of the event, they
assumed the activity levels at a tower during the
event follow a normal or gaussian distribution
but that the mean of this tower’s distribution is
now a function of the distance from the epicenter.
Specifically they used for tower i a distance-
dependent mean mi C ˛Di .ex; ey/

!1, where mi

is the normal mean traffic for i , ˛ is some con-
figurable scaling parameter, andDi .ex; ey/ is the
geographic distance of tower i from an epicenter
located at coordinates .ex; ey/. They determined
this epicenter .ex; ey/ (and also ˛/ using well-
established maximum likelihood estimates, that
is, they found the epicenter and scaling param-
eters that maximize the sum of the log’s of all the
tower’s probabilities.

The other problem they wish to address is to
predict what areas are most in need of emergency
aid. To do this, they want to predict whether
a particular tower will experience a significant
increase in traffic some number of days after
the event. They accomplished this by building
a classifier which allows them to estimate this
persistence probability. Since it is reasonable to
assume that areas with higher populations are
likely to require more aid, they built an “as-
sistance opportunity score” for a location by
taking the product of the persistence probability
estimate for that location and the population at
that location. Such a score allows emergency
responders to potentially prioritize aid efforts.

The authors also pointed out an important
issue when using mobile phone data to study
these problems: the density of towers, and
therefore information, is not uniform. Cities have
many more towers than rural regions, and this
leads to far greater granularity in areas of high
population and greater information uncertainty
in areas with fewer towers. They exploited this
fact to estimate what areas are most valuable to
survey manually for information after an event,
by prioritizing surveys towards areas with more
uncertainty. They did this by devising a simple
mechanism to drive down the entropy in the
information that may be gained from the system,
and they even incorporated geographic distances
since it is more expensive in terms of time and
effort to survey more remote regions.

All of their methods were validated by com-
parison with the February 3 earthquake and were
shown to work rather well. For future work they
discussed a number of interesting advancements
such as incorporating richer models of geograph-
ic terrain.

Mobile Phones andDisasters
Bagrow et al. (2011) performed a data-driven
analysis of a number of emergencies, including
bombings, a plane crash, and another earthquake.
This work reported a number of empirical dis-
coveries regarding the response of populations
in the wake of emergencies (and non-emergency
control events such as festivals), as measured
from the country-wide data of a single mobile
phone provider in Western Europe. The assump-
tions made by Kapoor et al. (2010) are further
justified by their work.

They found that emergencies trigger a sharp
spike in call activity (number of outgoing calls
and text messages) in the physical proximity
of the event, confirming that mobile phones
act as sensitive local “sociometers” to external
societal perturbations. In Fig. 1a, we plot the
relative call volume !V= hVnormali as a function
of time, where !V D Vevent ! hVnormali, Vevent

is the number of calls made from nearby towers
during the event, and hVnormali is the average
call volume during the same time period of the
week (Figure adapted fromBagrow et al. (2011)).
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The anomalous traffic starts to decay immediately
after the emergency occurs, suggesting that the
urge to communicate is strongest right at the
onset of the event. There was virtually no delay
between the onset of the event and the jump
in call volume for events that were directly
witnessed by the local population, such as the
bombing, the earthquake, and the blackout. Brief
delay was observed only for the plane crash,
which took place in an unpopulated area and thus
lacked eyewitnesses. In contrast, non-emergency
events, like the festival and the concert, displayed
a gradual increase in call activity.

The temporally localized spikes in call
activity (Fig. 1a) raise an important question:
is information about an event limited to
the immediate vicinity of the emergency
or do emergencies, often immediately cov-
ered by national media, lead to spatially
extended changes in call activity (Petrescu-
Prahova and Butts 2008)? To investigate
this, Bagrow et al. inspected the change in
call activity in the vicinity of each event’s
epicenter, finding that for the bombing, for
example, the change in call volume is strongest
near the event and drops rapidly with the distance
r from the epicenter. To quantify this effect
across all emergencies, they integrated the
call volume over time in concentric shells of
radius r centered on the epicenter. The observed
decay in anomalous traffic was approximately
exponential,!V.r/ ! exp ."r=rc/, allowing one
to characterize the spatial extent of the reaction
with a decay rate rc (we present their results for
the plane crash in Fig. 1b). The observed decay
rates ranged from 2 km (bombing) to 10 km
(plane crash), indicating that the anomalous
call activity is limited to the event’s vicinity.
An extended spatial range (rc#110 km) was
seen only for the earthquake. Meanwhile, non-
emergencies are highly localized: they possess
decay rates less than 2 km. This systematic split
in rc between the spatially extended emergencies
and well-localized non-emergencies persisted for
all explored events.

Despite the clear temporal and spatial local-
ization of anomalous call activity during emer-
gencies, one expects some degree of information

propagation beyond the eyewitness population.
To study how emergency information diffuses
through a social network, Bagrow et al. used
mobile phone records to identify those individ-
uals located within the event region, forming a
population called G0 as well as a group calledG1

consisting of individuals outside the event region
but who receive calls from the G0 group during
the event, a G2 group that receive calls from G1,
and so on. They reveal that the G0 individuals
typically engage their social network within min-
utes and that the G1, G2, and occasionally even
the G3 group show an anomalous call pattern
immediately after an emergency.We present their
illustration of a segment of this contact network
for the bombing in Fig. 1c. The authors proceeded
to further quantify and control for this social
propagation and showed that the bombing and
plane crash have significant propagation up to the
third and second neighbors of G0, respectively.
They found that other emergencies, the earth-
quake and blackout, displayed relatively little
propagation. This seems reasonable given the less
severe nature of those events (the earthquake was
relatively minor).

Finally, we also presented a breakdown of a
number of measurable features for each emer-
gency and non-emergency and showed that these
features may be used to distinguish anomalous
call activity due to benign events such as music
festivals from spikes in call volume that indicate a
dangerous event has occurred. Using such factors
may allow first responders to more accurately
understand rapidly unfolding events and may
even allow them to actively solicit information
from mobile phone users likely to be near the
event.

Key Techniques

We summarize the key techniques that have been
used in the above-mentioned studies.
Event Detection. The first challenge in large-
scale emergency studies is to determine and col-
lect a subset of data relevant to emergencies
under consideration. With Twitter or other social
media data where the communication content is



Social Networks in Emergency Response 1911 S

S

first half hour first hour first two hours
Previous
week

c Bombing

G7

G0

a
Bombing
Plane crash
Earthquake
Blackout

0

1

2

3

4

Festival
Concert

0
2
4
6
8

10

−3 −2 −1 0 1 2 3 4 5 6 7

∆V
/〈V

no
rm

al
〉

time since event (hours)

b

−2 < t < 0
0 < t < 2
exp(-r / 9.98)

−2

0

2

4

6

8

10

0 10 20 30

×103

distance from epicenter, r (km)

∆ 
V

(r
) 

(c
um

ul
at

iv
e)

Plane crash

Social Networks in Emergency Response, Fig. 1
Temporal, spatial, and social response during emergen-
cies. a The time dependence of call volumeV.t/ after four
emergencies and two non-emergencies. We plot the rela-
tive change in call volume !V= hVnormali, where !V D
Vevent!hVnormali,Vevent is the call volume on the day of the
event, and hVnormali is the average call volume during the
same period of the week. b The total change in call volume
during 2-h periods before and after the plane crash, as
a function of distance r from the epicenter of the crash.

Following the event, we see an approximately exponential
decay !V " exp r=rc characterized by decay rate rc. c
Part of the contact network formed between mobile phone
users in the wake of the bombing. Nodes are colored by
group, with G0 representing phone users calling from the
event region, G1 the recipients of those calls, etc. As
time goes by more users are contacted as information
propagates. Those same users make little contact during
a corresponding time period the week before (Figure
adapted from Bagrow et al. (2011))
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available in text format, most studies begin with a
simple keyword matching, that is, collecting data
that contained instances of the relevant keywords
such as “flu,” “H1N1,” and “earthquake.” The
initial collections could be refined by manual
and automated classification process. Classifica-
tion techniques such as Support Vector Machines
(SVMs) have been employed (Aramaki et al.
2011; Sakaki et al. 2010), and topic cluster-
ing methods such as Latent Dirichlet Allocation
(LDA) can be used to improve the classifica-
tion (Paul and Dredze 2011; Prier et al. 2011).
Validation of this body of work is often conducted
based on authority reports such as Centers for
Disease Control and Prevention (CDC) statistic-
s (Signorini et al. 2011) (for disease outbreaks) or
US Geological Survey (USGS) reports (Guy et al.
2010; Earle et al. 2012) (for earthquakes). While
the messages disseminated in social media might
be inaccurate, there has been work on determin-
ing the quality of information sources (Li and Rao
2010; Mendoza et al. 2010). Further, by applying
time-series analysis and spatiotemporal pattern
analysis (e.g., Kalman filtering and particle fil-
tering in Sakaki et al. (2010)), researchers have
developed powerful earthquake detectors with
performance comparative to existing earthquake
detection systems.

Event Prediction and Forecasting. The devel-
opment of event prediction and forecasting is still
in its early stage. Gomide et al. (2011) used a
linear regression model to predict the number of
dengue cases. The earthquake detectors (Sakaki
et al. 2010; Guy et al. 2010; Earle et al. 2012)
that reported earthquakes faster than the seismo-
graphic detection can be used as early warning
system. There has been work on developing in-
formation infrastructure which has the ability to
deliver relevant information to users once events
are detected (Caragea et al. 2011).

Spatiotemporal Pattern Recognition of
Events. Unlike social media data, the content
of communication is often unavailable in mobile
phone data, and hence the identification of
emergency events in mobile phone data relies
on analyses of spatial and temporal anomalies
of call logs. The main challenge of this research

is to construct reasonable null model in order to
recognize anomaly events. Bagrow et al. (2011)
proposed using pre-emergency normal activities
as well as the activities during non-emergency
events to contrast the activities of emergency
events. Based on this approach the epicenter of
an emergency event can be identified. Kapoor
et al. (2010) used a similar methodology to
identify event epicenters as well as to predict
the locations in need of emergency aid.

Future Trends

Foundational work understanding the sociology
of disaster was limited in scale by available data
but surveys and interviews can ask a number
of in-depth follow-up questions. To understand-
ing population response from, for example, mo-
bile phone call volume alone is potentially more
challenging as such data, while perhaps being
more objective, is also far shallower. This begs
the question: can more depth be found in commu-
nications data? The wealth of textual information
available within social media such as Twitter
can be leveraged to learn more context about
how populations respond to emergencies, and
advances in data mining and natural language
processing techniques offer the promise of even
greater information. This may allow researchers
to separate relevant information from spurious
activity, improving the accuracy and precision of
information available to rescuers.

One can reasonably expect a degree of noise
from any communication system, as users will be
focused on diverse topics. Yet when something
of overwhelming importance occurs, such as an
emergency, it seems reasonable to expect that
event to capture the majority of user attention.
This may lead to a communication system that
is less noisy and more focused as the severity of
the event increases, in the sense that an increasing
fraction of the system’s communication will be
about that event. Given this, it may be worth
trying to develop (rigorous) bounds on howmuch
useful information can be successfully extracted
from such a system during and immediately fol-
lowing an event. This could allow quantitative
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benchmarking of algorithms designed to assist
rescuers by comparing, for example, how much
emergency information was extracted by an algo-
rithm with the maximum amount possible.

Meanwhile, it will be crucial going forward
to develop algorithms that combine and help
understand multiple data sources—such as cell
phone call volume, twitter messages, and perhaps
even security cameras, all from a given geo-
graphic locale. This trend towards greater data
availability and unification will only continue
as more advanced and entirely new forms of
telecommunication come into widespread use.
Without methods to handle the increased diver-
sity and volume of communication, rescuers may
be unable to capitalize on the extra information
provided by future telecommunications.

Conclusion

We have reviewed a number of works focused
on the use of communications data, from social
media to mobile phones, to understand how peo-
ple react to emergencies and disasters. This prob-
lem is of critical importance: in many areas of
the world, more people than ever are at risk,
as both human populations and threats due to
climate change continue to grow. Hopefully tools
derived from social media and other communi-
cation datasets will help rescuers improve their
emergency and disaster response by providing
accurate, useful, and timely information in the
wake of such events.
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