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S1. DATA

S1.1. Dataset collection

• BrightKite is a LBSN service provider that allowed registered users to connect with

their existing social ties and also meet new people based on the places that they go.

Once a user "checked in" at a place, they could post notes and photos to a location

and other users could comment on those posts. The social relationship network was

collected using their public API. Dataset link: https://snap.stanford.edu/data/loc-

Brightkite.html

• Gowalla This is a LBSN website where users share their locations by checking-in. In

early versions of the service, users would occasionally receive a virtual "Item" as a

bonus upon checking in, and these items could be swapped or dropped at other spots.

Users became "Founders" of a spot by dropping an item there. This incentivises users

to create new check-ins, not necessarily to check-in consistently at frequently visited

locations. The social relationship network is undirected and was collected using

their public API. Dataset link: https://snap.stanford.edu/data/loc-gowalla.html

• Weeplaces - This is collected from Weeplaces and integrated with the APIs of other

LBSN services, e.g., Facebook Places, Foursquare, and Gowalla. Users can login

Weeplaces using their LBSN accounts and connect with their social ties in the same

LBSN who have also used this application. Weeplaces visualizes your check-ins on a

map. Unlike Gowalla, there is no direct incentive in Weeplaces to alter one’s visita-

tion habits or check-ins, so there should be a more accurate representation of a regular

person’s mobility patterns. Dataset link: https://www.yongliu.org/datasets/

S1.2. Mobility Statistics

The number of unique visited locations, the distribution of jump lengths and the radii

of gyration are shown in Figure S2. The latter two quantities are qualitatively identical

among the three datasets and consistent with other sources. The distribution of jump

lengths resembles a power law distribution, and the tail of the distribution of the radius
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FIG. S1. Check-in Maps of Gowalla, BrightKite, and Weeplaces. The colorbar signifies the

number of check-ins within a 50km radius, and shows highest coverage in North America and

Western Europe

of gyration closely represents a truncated power law. The distributions of the number

of distinct locations illuminate characteristic differences between the datasets. Users of

Gowalla are more likely to to visit many locations, while users of BrightKite check-in at
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very few distinct locations.
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FIG. S2. Statistical distributions of selected mobility quantities (A) Distribution of total distinct

locations visited by all users in each dataset. (B) Distribution of Jump Lengths of all check-ins of

users in the datasets (C) Histogram of Radii of Gyration for all users in the datasets

S1.3. Pre-processing

S1.3.1. Entropy estimator convergence

Because our data is finite and fairly sparse, we need to understand how well the entropy

estimators saturate and set thresholds for our data for robustness. We establish a threshold

for number of check-ins per user that will yield enough data to analyze the per-user

entropy. We heuristically set a threshold of 150 check-ins, plot the entropy rate with

respect to a percentage of the ego’s trajectory, and find that the data roughly stabilizes

within 50% of the ego’s trajectory.

S1.3.2. Cross-entropy estimator convergence

There are some pairs whose cross-entropy varies dramatically over the final portion

of the data (Figure S4A). To examine this we plot the cross entropy of rank-1 alters with

respect to a cutoff% of their ego’s trajectory. First, we find many alters have check-ins
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FIG. S3. Entropy rate as a function of a percentage of the ego’s trajectory.
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FIG. S4. Convergence of Cross Entropy Estimator curve. Shown are the cross entropies of the

rank-1 alters for a subset of users (for ease of visualization). (A), The cross entropy of rank-1

alters as a function of a cutoff percentage of the ego’s trajectory (B), The log ratio of the standard

deviations of the end and beginning partitions show much lower variability in the latter end of the

trajectory, signifying a leveling-off of the cross entropy estimator.

after the last check-in of the ego, leading to a trailing sequence of check-ins that would

over-inflate the entropy and do not contribute to the information contained in the ego.

Therefore we establish a cutoff of Nprevious = 150, meaning there must be at least 150

alter-check-ins before the last check-in of the ego.
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We also see from (Figure S4A) that the distribution of check-ins among alters is varied,

in that some alters do not have many check-ins at the beginning of the ego’s trajectory,

but they satisfy the Nprevious >= 150 threshold. To examine the saturation of the entropy

and cross-entropy estimators, we partition the data into two portions and compare the

variances of the entropy values of the two portions. We use a 50-50 split and an 80-20 split

to show how well the cross entropy saturates in the final part of the data compared to the

previous. The 80-20 split was chosen based on the 150 check-in minimum, so the final 20%

of the data would have at least 30 check-ins for which one could reasonably calculate a

variance. The two partitions show that as the number of check-ins increase, the variance in

the latter portion relative to the earlier portion is much smaller, indicating that alters with

high variability are few as seen in the rapid fall-off in the tail of the distribution. After

pre-processing, the summary statistics are shown in Table S1.

TABLE S1: The summary of three pre-processed datasets.

Dataset Total Check-ins Users Distinct Placeid

Weeplace 7,049,037 11,533 924,666

BrightKite 3,513,895 6,132 510,308

Gowalla 3,466,392 9,937 850,094

S2. EGO-ALTER NETWORK CONSTRUCTION

In each of the LBSNs we use, there exist both a location check-in network and a social

network, so we can use the social network to compare against a proxy network. With

the check-in network, we can form an artificial social network by assigning connections

to users that check in at the same place at the same time. We took a colocation as two

users checking in at the same place-id within an hour starting on the hour, eg. 8:00 - 9:00

(The choice of the 1-HR bin for colocation was examined and the details can be found

in Section S2.5). We assume that users that co-locate more often contain more predictive

information about each other’s whereabouts, so we rank users’ social relationship based

on the number of times they co-locate, both in the social relationship and colocation

network. Because two people that co-locate are not necessarily social ties, we use the term
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"ego" to describe users who’s mobility data we are trying to predict by the location history

of their "alters" (non-social colocators and social ties).

S2.1. Quality control of colocators

Unlike social relationship, colocation is a theoretical and artificial relationship between

two individuals. We find that a user among all datasets reasonably have more colocators

than social ties. There are many colocators who are strangers to the user because the two

happen to check-in at the same time by accident, eg. a colocator with a single colocation

with a user. If user A and B only have one colocation, they are probably strangers to each

other and just happen to appear in one place at the same time period by chance. Thus,

there is no doubt that A (or B) can hardly provide any useful information for B (or A)

when looking at their previous trajectories. Therefore, we made further quality control by

discarding the colocator with only one colocation.

For all users in the datasets, their remaining colocators make up the qualified network

and these colocators are called qualified colocators. All colocators used in this paper are

qualified colocators, unless indicated otherwise.

S2.2. Contribution control of colocators and social ties

We can use a random algorithm as null model to compare to the information contained

in a user’s trajectory. The probability of correct prediction in null model is 1/Nego where

Nego is the number of unique locations of ego’s historical trajectory. Any useful algorithms

have to perform better than a random algorithm and these algorithms should have no

fewer than log2(Nego) bits information from the view of information theory. As a conse-

quence, we took further contribution control of both colocators and social ties according

to LZ cross-entropy. For any ego, we classified all alters (colocators and social ties) as

two groups: "useful" if the ego-alter pair’s LZ cross-entropy is less than log2(Nego), and

"useless" otherwise. Additional colocators were found whose sequences had no previous

matches to their ego’s sequence at any point in the ego’s trajectory (wb = 0 in Section S2.2).

We therefore consider all pairs where the alter’s trajectory contained no previous matches

as "useless". After these considerations were made, we considered only the useful alters
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and discarded the rest.

S2.3. Statistics of constructed network

TABLE S2: The summary of three filtered datasets. The num-

ber of egos who have at least ten alters in both non-social

colocation (quality control and contribution control apply)

and social (contribution control applies) network. The com-

mon networks include the common egos with their respective

top ten alters in each network.

Dataset
Non-social colocation network Social network Common-Ego networks

ego ego-alter pair ego ego-alter pair ego ego-alter pair

BrightKite 122 2,684 187 4,460 33 330

Gowalla 192 9,332 349 7,681 97 970

Weeplaces 665 21,741 401 8,042 199 1,990

S2.4. Choice of the number of top alters

We would like to choose the highest quality subset of alters among our data. Because

we choose colocation as a proxy for social ties, we examine the usefulness of alters based

on the number of colocations. We place an additional sub-ranking criteria where alters

with the same number of colocations are ranked in increasing order of number of check-ins

of the alter. We assume that alters with higher ratios of colocations to number of checkins

will provide more information than those with lower ratios. After keeping all useful alters,

we look at the average number of colocations per rank of the datasets (Figure S5). All three

datasets show that beyond roughly 10 alters, the number of colocations saturates at fewer

than around 5 meetups, making the potential influence due to colocation insignificant.

Therefore, in our analysis we focused on the contribution from the top ten alters. Cross

Entropy distributions of rank-5 (middle) and rank-10 (low) were plotted for both networks

for all datasets, and on average the entropies increased with lower rank (Figure S8).
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FIG. S6. Information contained in alters. (A) Cross-entropy of ego with their rank-5 social tie

and rank-5 non-social colocator. (B) Cross-entropy of ego with their rank-10 social tie and rank-10

non-social colocator.
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S2.5. Robustness of temporal windows in colocation network construction

The colocation network construction relies on a specified time-resolution, so different

time-resolutions would capture different colocators for each ego. To test the robustness of

the 1-hour colocation time frame, we compared a 1-hour clock-bin network (colocation

on a given day within the interval (T:00:00,T:59:59), T ∈ (0, 1, 2..., 23)) to a 1-hour sliding-

window network (colocation within ±30 minutes of a check-in of the ego). We consider

the 199 egos with at least ten alters in Weeplaces dataset. From Figure S6 we see that

within error bars, the colocation networks of different-sized clock bins have statistically

similar trends in cumulative cross-predictability. The cumulative predictabilities of ego

with increasing number of qualified colocators based on different temporal windows are

statistically similar.
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FIG. S7. The comparison between choice of 1-hour clock-bin and sliding window in BrightKite,

Gowalla, and Weeplaces. Error bars denote ±95% CI.

S3. INFORMATION CONTAINED IN ALTERS

S3.1. Analysis for Brightkite and Gowalla

Figure S9 and Figure S10 show the information-theoretic analysis of Brightkite and

Gowalla respectively
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FIG. S8. The cross-entropy and predictability provided by social ties and non-social colocators

in BrightKite. A Distributions of ŜA|B for the rank-1 social tie (median 4.84 bits), non-social

colocator (median 5.03 bits), and ŜA|B for the top-2 non-social colocators (median 4.90 bits) in B

The corresponding ΠA|B for the social (median 51.94%), and non-social colocators (median 54.84%),

and ΠA|B for the top-2 non-social colocators (median 57.86%). C ŜA|B encoded in the top-social tie

as a function of ŜA|B for the top-3 non-social colocators. Each point corresponds to a single ego and

the solid line denotes y = x. D As in panel C but with predictability instead of cross-entropy. E, F

ŜA|B and ΠA|B after accumulating the top-ten social alters and non-social colocators. Horizontal

lines denote the average entropy (2.98 bits) of egos and their self-predictability (73.33%). Error bars

denote 95% CI.
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FIG. S9. The cross-entropy and predictability provided by social ties and non-social colocators

in Gowalla. A Distributions of ŜA|B for the rank-1 social tie (median 7.27 bits), non-social colocator

(median 7.77 bits), and ŜA|B for the top-7 non-social colocators (median 7.26 bits) in B The corre-

sponding ΠA|B for the social (median 24.14%), and non-social colocators (median 14.92%), and

ΠA|B for the top-7 non-social colocators (median 24.14%). C ŜA|B encoded in the top-social tie as a

function of ŜA|B for the top-3 non-social colocators. Each point corresponds to a single ego and

the solid line denotes y = x. D As in panel C but with predictability instead of cross-entropy. E, F

ŜA|B and ΠA|B after accumulating the top-ten social alters and non-social colocators. Horizontal

lines denote the average entropy (6.26 bits) of egos and their self-predictability (39.49%). Error bars

denote 95% CI.
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FIG. S10. Homophily in predictability. Scatterplot comparing the predictabilities of egos to their

rank-1 alters. All egos are those who have at least both 10 social ties and 10 non-social colocators.

The black solid lines in each subplot are y = x.
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S4. EXTRAPOLATING CROSS-PREDICTABILITY

We’ve chosen the top 10 alters in determining the cumulative mobility information flow

between the alters’ respective egos. We extrapolate these results by fitting a saturating

function to our data, to determine the potential information flow in the limit of infinite

alters (or more realistically around 150 alters, the maximum number of social ties a given

person can reasonably have). The saturating function used is

Π(i) = Π∞ +
β0

β1 + i
(S1)

where i is the number of top i included alters. A χ2 minimization of the means and their

errors using the BFGS algorithm was used to determine the most likely parameters. A

95% confidence interval of the parameters was determined using a t-test with 10 alters −3

parameters = 7 degrees of freedom. Results can be found in Table S3.

TABLE S3: Parameters for saturating function of the cumu-

lative cross predictability Π(i)

Dataset &
Brightkite Gowalla Weeplaces

Network Social Non-Social

colocation

Social Non-social

colocation

Social Non-social

colocation

Π∞ 0.6699 ±

.003313

0.6329 ± .00504 .4319 ±

0.005082

.3897 ± .003186 0.4431 ±

.001039

0.3979 ±

0.003427

β0 -0.4629 ±

.03817

-0.2980 ± .0445 -.7427 ±

.07489

-1.881 ± .0747 -0.7792 ±

0.01240

-1.616 ± .0662

β1 1.937 ±

.2011

.9096 ± .25089 3.224 ±

.3323

7.135 ± .2237 2.083 ±

0.04045

5.307 ± .1865

S5. SPATIAL CORRELATION ANALYSIS

We plot the correlation between the cumulative cross-predictability and the CODLR

in both types of networks as one progressively adds alters from rank-1 to rank -10 in

Figure S11 and Figure S12 for the Weeplaces dataset (571 common egos). While including

a single alter yields a Pearson correlation coefficient R = 0.13 in colocation network and
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R = 0.27 in social network, the correlation increases as one progressively adds more alters

saturating at R = 0.67 and R = 0.66 in colocation network and social network,respectively.

We can also the same trend in both BrightKite (See ?? and ??, 122 common egos)and

Gowalla ((See ?? and ??), 186 common egos) datasts.
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FIG. S11. CODLR vs cumulative cross-predictability for non-social ties in Weeplaces. R is

Pearson’s correlation coefficient and p is p-value. The solid black lines are linear regression lines.
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FIG. S12. CODLR vs cumulative cross-predictability for social ties in Weeplaces. R is Pearson’s

correlation coefficient and p is p-value. The solid black lines are linear regression lines.
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FIG. S13. CODLR vs cumulative cross-predictability for non-social ties in BrightKite. R is

Pearson’s correlation coefficient and p is p-value. The solid black lines are linear regression lines.
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FIG. S14. CODLR vs cumulative cross-predictability for social ties in BrightKite. R is Pearson’s

correlation coefficient and p is p-value. The solid black lines are linear regression lines.
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FIG. S15. CODLR vs cumulative cross-predictability for non-social ties in Gowalla. R is

Pearson’s correlation coefficient and p is p-value. The solid black lines are linear regression lines.
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FIG. S16. CODLR vs cumulative cross-predictability for social ties in Gowalla. R is Pearson’s

correlation coefficient and p is p-value. The solid black lines are linear regression lines.
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S6. TIME LAG EFFECT

To check the similarity in pair-wise connections of the different temporal-lag networks,

we compute and Jaccard similarity defined for any two sets A, B as J(A, B) = |A∩B|
|A∪B| , where

| · | is the number of elements in the set. All ego-alter pairs in each type of network are

considered the sets A and B. The results for selected temporal-lag networks are presented

in Figure S7. The THr-lag networks correspond to sliding windows where an ego check-in

at time t colocates with an alter on the interval (t− T, t− (T− .5))
⋃
((t + (T− .5), t + T).

This means a .5Hr-lag network corresponds to a 1Hr sliding window colocation network

with no temporal lag. The ego-alter pairs of all temporal-lag networks are generally

different but provide similar trends in cross predictability and in cumulative overlapped

distinct locations.
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FIG. S17. The comparison among the non-social co-located alters within 0.5H, 3H, 6H, 12H

one hour sliding windows in Weeplaces dataset. A, (Cumulative) cross-predictability ΠA|B

VS different included number of alters. B, Global Jaccard Similarity between the the non-social

co-located alters within 0.5H, 3H, 6H, 12H one hour sliding windows. C, (Cumulative) overlapped

distinct location ratio ηA|B VS different included number of alters. Error bars denote mean ±95%

CI.
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