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Abstract— The friendship paradox states that in a social
network, egos tend to have lower degree than their alters, or,
“your friends have more friends than you do”. Most research
has focused on the friendship paradox and its implications for
information transmission, but treating the network as static
and unweighted. Yet, people can dedicate only a finite fraction
of their attention budget to each social interaction: a high-
degree individual may have less time to dedicate to individual
social links, forcing them to modulate the quantities of contact
made to their different social ties. Here we study the friendship
paradox in the context of differing contact volumes between
egos and alters, finding a connection between contact volume
and the strength of the friendship paradox. The most frequently
contacted alters exhibit a less pronounced friendship paradox
compared with the ego, whereas less-frequently contacted alters
are more likely to be high degree and give rise to the paradox.
We argue therefore for a more nuanced version of the friendship
paradox: “your closest friends have slightly more friends than
you do”, and in certain networks even: “your best friend
has no more friends than you do”. We demonstrate that this
relationship is robust, holding in both a social media and
a mobile phone dataset. These results have implications for
information transfer and influence in social networks, which
we explore using a simple dynamical model.

INTRODUCTION

The “friendship paradox” is the observation that the
friends of individuals tend to have more friends on average
than the individuals themselves. This notion was first artic-
ulated for social networks [1] but it plays a role on other
settings as well [2], [3], [4]. The friendship paradox stands
alongside other famous features of social networks: the
strength of weak ties, that people tend to gain novel informa-
tion not from close friends but from weak acquaintances [5],
and Dunbar’s number, which argues that human’s have a
cognitive upper limit on the effective size of an individual’s
social circle [6]. Researchers have studied and validated
these properties in a number of modern datasets, including
Twitter [7], [8], Facebook [9], [10] and mobile phones [11],
[12], [13]. Network degree relates to many personality traits
such as introversion [14], and perceptual biases also factor
into the effects of the friendship paradox [15]. All of these
phenomena in concert provide a deeper understanding of
how social networks form under cognitive and attentional
limits, how information can move between individuals via
the network, and to what extent the individual’s embedded
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view corresponds to the actual network or information within
it.

The friendship paradox along with the strength of weak
ties play significant roles in how one is exposed to informa-
tion socially. By increasing the size of his or her social circle,
an individual can gain access to a potentially overwhelming
array of information. But in the modern “attention economy”,
limited attention and bombardment of information may dull
the effectiveness of social information spread by making it
more difficult to exchange information with weak ties [16].
This can be due to reduced opportunities for communication
and, if those weak ties are popular individuals, limited
attention to spend on any one of their social ties. Therefore,
it is crucial to understand the interplay between an individual
and his or her social ties, not simply from the static features
of those ties but also from the dynamics and relative fre-
quencies of those interactions. Focussing as they do on the
structural properties of static, unweighted social networks,
previous analyses ignore valuable information on the nature
and strength of social ties.

In this work, we study two social network datasets, one
derived from Twitter and one from mobile phone activity.
We move beyond the classic friendship paradox analysis to
consider what effects the volume of contact between egos
and alters may have on the paradox. We show that there is a
significant relationship between these quantities, in particular
that the more heavily or frequently contacted alters tend
to have fewer social ties than the less frequently contacted
alters. This implies that much of the driving force behind the
friendship paradox is due to these weak ties. Expanding upon
this analysis, we investigate the generality of our results by
studying similarities and differences between the properties
of these two very different datasets and determining how
those differences track with the relationship between contact
volume and the number of friends of alters. For example,
the outdegree of Twitter users is more heavily right-skewed
than mobile phone users, yet both sets of users display the
same contact volume–outdegree relationship. We apply a null
model to show the significance of this relationship while ac-
counting for data sampling effects. The friendships paradox
plays a role in information diffusion over a social network
alongside other features such as the strength of weak ties.
We use a dynamical model of a simple information diffusion
process to show that the relationship plays a significant role
in slowing down the spread of information. The work we
present here moves beyond static network properties and
strengthens the connection between the friendship paradox,
the strength of weak ties, and Dunbar’s number.



DATASETS
We focused on two social network datasets, one taken

from Twitter.com social media users and one from Mobile
Phone billing records. We extracted thousands of egocentric
networks from each dataset, gathering the outdegrees of egos
and alters, and ranking alters by the volume of contact from
the ego (rank-1 is the most frequently contacted alter).

Twitter

• Here the outdegree kout was the number of followers
of users and alters were ranked by the number of at-
mentions from the ego.

Specifically, we collected the Twitter dataset by selecting
a random sample of individuals for study from the 10%
Gardenhose feed collected during the first week of April
2014. From this, we uniformly sampled individuals who had
tweeted in English (as reported by Twitter in the metadata
for each tweet) during this time period and, to control for
confounding effects of the highly right-skewed distribution
of Twitter users, had 50 ≤ kout ≤ 500 followers, as reported
in the tweet metadata. We then collected their complete
public tweet history (up to 3200 most recent messages by
Twitter’s Public REST API limit [17], excluding retweets.
These individuals formed the egos of the dataset. For each
ego, we determined through their messages their top-15 most
at-mentioned alters, and then proceeded to gather the tweet
histories and other metadata (number of followers) of these
alters using the Public REST API in the same manner. We
limited ourselves to the top-15 alters because gathering the
complete tweet history from the API is time-intensive. When
finished, this collection process gathered 3,300 individual
egos and 38,650 alters, 32,980 of which are unique across
ego networks.

Sampling— To be retained as part of the Twitter data we
required that all egos and alters have posted at least 10k total
words in their complete, collected public tweet history. It is
possible that some of the top-15 alters for a given ego do
not satisfy this criterion, leading to gaps in that ego’s set
of alters. However, we still use all at-mentioned alters for
ranking purposes, so that if, e.g., an ego with 3 alters has
the rank-2 alter excluded from calculations, we still know
and retain the correct rank of 3 for the third alter.

Mobile Phone

• Here kout was the number of unique recipients of phone
calls or text messages and alters were ranked by the
number of calls and/or texts they received from the ego.

This dataset is comprised of de-identified billing records of
approximately 10M subscribers to a mobile phone service
provider in a western European country [18], [19], [20]. We
sampled approximately 90 thousand subscribers from a nine-
month period of these billing records to form the egos of the
dataset. These records contain the full call histories of each
subscriber, from which we can extract three time-series: (i)
timestamps when phone calls were made or text messages
sent, to an hourly resolution; (ii) approximate locations from
where calls/texts were made, as quantified by the cellular

tower transmitting the call/text; and (iii) the recipients of
these calls and texts. To ensure a complete picture of the
activities of the egos, we applied the sampling criteria of
[19]: selected egos must place calls from at least two distinct
cellular towers during the nine-month data window, and
their average call frequency must exceed 0.5 hour−1. No
constraints were placed on the outdegrees. For each ego, the
third time series was used to reconstruct their corresponding
egocentric communication network, up to the 100 most-
contacted alters, with call/text recipients forming the ego’s
set of alters.

Sampling— The mobile phone records are limited to
subscribers of a single service provider, which means we
only have call histories for subscribers. Yet, subscribers will
often call non-subscribers. In these data, non-subscribers
are consistently identified for us, but their activities are not
captured except when they interact with subscribers. This
means that, while all egos in our study have full data, not
all alters do, and we cannot compute the outdegree of non-
subscriber alters. However, because we rank alters based on
the contact volume from the ego, we still rank all alters
correctly. To account for this, we only include subscriber
alters within our calculations, but using their correct ranks.
For example, an ego with three alters where the rank-2 alter is
not a subscriber will still accurately provide two data points
(ego-alter dyads) for any calculations, the rank-1 alter and
the rank-3 alter.

RESULTS

The friendship paradox states that the mean degree of
alters is greater than the degree of the ego for most egos
in a social network. Using the data and our choices for
outdegree, we found that the friendship paradox holds in
both datasets. For Twitter it is highly prevalent, holding for
99.7% of egos, comparable to that found by other researchers
on Twitter datasets [8]. (It also holds for 99.3% of egos
when comparing the median outdegree of alters to the ego.)
The friendship paradox is prevalent in the mobile phone
data as well, with 76.8% of egos having lower outdegree
than the mean outdegree of their alters. This percentage
also matches closely with the 74% identified for one of the
datasets analyzed in the original friendship paradox work [1].

We compared the outdegrees of alters as a function of how
frequently the ego contacted them, as quantified by the rank
of the alter, with rank-1 being the most frequently contacted
alter. Ranking alters allows us to make comparisons across
egos of differing overall activity levels. The mobile phone
data allows us to examine a larger number of alters per
ego (up to 100) whereas the Twitter data collection API
effectively limited us to at most 15 alters.

Figure 1 displays the relationship between alter kout and
alter rank. Despite their very different natures, usage patterns,
and social roles fulfilled by Twitter and mobile phone com-
munication activity, as well as the different scopes of the
data we have collected, we observed the same qualitative
trend: the more frequently contacted alters tend to be of
lower degree than the less frequently contacted alters. Indeed,
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Fig. 1: Your friends are more popular than you, but your most frequently contacted alters are the least popular. Rank 1 =
most frequently contacted.

in the mobile phone dataset, the mean ego outdegree for
the egos (166.3) is in fact slightly greater than that for
the rank-1 alter (154.2), reversing the friendship paradox.
Only 48% of egos have outdegree lower than their rank-1
alters, in stark contrast to Feld’s original finding that 74%
of egos have outdegree less than the mean outdegree for all
of their alters. Similarly, for the mobile phones the median
ego outdegree is 120, compared with 116 for the rank-1
alter. While small, this difference is significant (p < 10−6,
Wilcoxon signed-rank test), meaning in our mobile phone
dataset we can reasonably claim “your best friend is no more
popular than you”. Therefore, we have shown that, at least
in these datasets, the main drivers of the friendship paradox
are not the “best friends”, but the more distant contacts.

While the trend of increasing kout with increasing rank
holds for both Twitter and Mobile Phone, there are differ-
ences. In particular, the extent of the increase is greater for
Twitter: the median kout for rank-1 alters was an order of
magnitude smaller than it was for rank-15 alters. In compari-
son, the change in kout is far more gradual for mobile phone
egos. (Note that Fig. 1a has a logarithmic vertical scale while
Fig. 1b does not.) The main driver behind this difference
is the relative skewness of the degree distributions of the
two social networks (Fig. 2). While the two distributions
look similar in shape overall—and both peak at kout ≈ 100,
a value comparable with Dunbar’s number of 150 [6]—the
hubs on Twitter are far higher degree, nearly four orders of
magnitude more than the mobile phones. This makes sense
because of the “broadcast” nature of social media relative
to a true social network: a mobile phone user simply cannot
contact so many people, but online social media enables such
large audiences. Because of this skew in kout we focused on
the median outdegree in Fig. 1a. Indeed, when considering
the mean outdegree instead (Fig. 1a inset), the trend is
swamped by outliers. Both mean and median measures show
similar results for mobile phones (Fig. 1b).

Figure 3 shows the relationship between decreasing con-

tact volume and increasing alter outdegree directly, without
ranking alters. Ranking is a useful technique here because it
eliminates much of the heterogeneity across egos: very active
egos and less heavily active egos will have very different
overall contact volume, but will appear similar in “rank
space”. Despite this, it is important to also look at the direct
relationship between contact volume and alter outdegree. We
took one step in Fig. 3 to account for heterogeneity—we have
binned the data by deciles of the outdegree degree of egos
(which strongly correlates with the total contact volume of
the ego). Due to the skew in outdegree of alters in Twitter
(Fig. 2) we first log-transformed the outdegree for Twitter.
We see for both datasets a significant decreasing trend. With
the possible exception of the 10th decile of mobile phone
egos, increases in contact volume overwhelmingly correlate
with decreases in alter outdegree.

To further investigate the link between contact volume and
alter outdegree, in particular to move away from some of
the statistical averaging (mean or median kout) applied so
far, we defined the hub alter of an ego as the alter with the
maximum kout (excluding any alters whose outdegree was
unavailable in the data). We investigated where the hub alter
tends to fall. Is the hub alter more likely to occur at lower
ranks, among the heavily contacted alters? Or at higher ranks,
among the less contacted alters. To find out, we computed the
proportion of ego-alter dyads for each rank r where the alter
at rank r was the hub alter, as a function of r (Fig. 4) 1. In
both datasets there is a significant, increasing trend (Twitter:
Spearman’s ρ = 0.8321, p < 0.001; Mobile Phone: ρ =
0.7208, p < 10−16), meaning that it is the less frequently
contacted alters who tend to be the hub alter.

Permutation test— Is there a significant relationship be-
tween the hub alter and its rank (Fig. 4), or could it be

1For this calculation we only considered egos with at least 5 alters with
an available kout. Egos with few alters must necessarily have the hub alter
at lower ranks, and this filter criterion prevents this dataset limitation from
masking any trends.
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Fig. 2: Degree distributions both peak near Dunbar’s number of k ≈ 150 while the Twitter degree distribution is more
right-skewed than Mobile Phone.
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Fig. 3: Direct (unranked) relationship between ego-to-alter contact volume and alter outdegree. Curves correspond to deciles
of the ego outdegree distribution (colors the same in both panels).

explained by a random effect or bias in the data? To test
the significance of what rank the hub alters fall at, we need
an appropriate null model. We assume that, if there is no
relationship, each possible rank is equally likely to be the
hub alter. This is a Monte Carlo permutation model that is
easy to compute (we did 1000 independent permutations for
each dataset). However, there is an important caveat: some
alters were excluded from our data either due to insufficient
written text (Twitter) or those alters are not subscribers to
the service provider (Mobile Phone); see Datasets for details.
This means that we did not have their outdegrees even though
for both data we ranked all the alters correctly. However, this
issue is easy to bypass—since we did not use those alters
we simply do not allow their ranks to be chosen randomly
under the null. In other words, for an ego with n total alters,
the null model samples a rank at random not from all ranks
1, . . . , n but only from the 0 < navailable ≤ n available

ranks for that ego. Crucially, accounting for “missing” alters
makes sure that any results we observe cannot be explained
by sampling effects. We simulated these null models and
overlaid the results on Fig. 4 (shaded regions denote the
middle 95% of random realizations not confidence intervals
on the mean proportion). For both datasets, there was almost
no relationship between alter rank and the proportion of hub
alters under the null, except for high ranks in the Twitter
data (which is explainable by sampling effects discussed in
Datasets). In fact, otherwise, if anything, there was actually a
weak decreasing trend in the null model for the first few (5–
10) alters of both datasets, likely due to averaging over egos
with different numbers of alters. In contrast, the real data
displays a strong increasing trend. Further, for both datasets,
the proportion of hub alters for the first few (approximately
7) ranks is significantly lower than expected from chance.

We also observed a Zipfian ranking relationship [21] be-
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Fig. 4: The proportion of ego-alter dyads where the alter is the ego’s “hub alter”. In both datasets, the likelihood of a hub
alter increases with rank and the likelihood for a hub alter in the first ≈ 7 ranks is significantly lower than expected by
chance. The guide line in (b) is a LOESS curve.

tween contact volume and alter rank. In Fig. 5 we show that
both datasets obey a power law relationship with power law
exponent ≈ 1.2 (although our Twitter data only provides a
little over a decade of data). This scaling has previously been
observed for mobile phones when ranking locations by the
number of visits [18] and when ranking social ties by contact
volume [20] as we did here. A similar scaling of ≈ 1.3 was
also found by Frank et al. for the probability of tweeting from
a location as a function of location rank [22]. Remarkably,
despite their different natures, potential differences in how
individuals use the respective communication services, and
sampling differences in our collected data, the Twitter and
Mobile Phone datasets demonstrate nearly identical scaling.

A key difference between the Twitter and Mobile Phone
data is sampling heterogeneity across ego-alter dyads. To
quantify this difference, we measured how many ego-alter
pairs (dyads) were present in the data for each alter rank.
This gives us the distribution of number of alters across egos
(which may differ from ego kout; see Datasets). As shown
in Fig. 6, most Twitter egos have comparable numbers of
available alters, at least up to around 8 alters. In contrast,
the Mobile Phone egos, while potentially having up to
100 alters, tend to have fewer than ten alters and unlike
Twitter this number drops off quickly. There are still at
minimum hundreds (Twitter) or thousands (Mobile Phone)
of dyads available at every alter rank. This points to distinct
differences in the form of the social network on these two
communication platforms and how the data is collected. Yet,
despite these differences, we have already observed a number
of similarities between Twitter and Mobile Phone in how
egos relate to alters.

Information cascades

The friendship paradox, in concert with the strength of
weak ties and Dunbar’s number, plays a significant role in
information diffusion on social networks. To explore how the

contact volume–outdegree relationship affects information
transfer, we used a simple dynamical model of information
transfer on the mobile phone network. We generated a
network with 88,137 nodes and 8,774,126 edges from the
degree distribution shown in Fig. 2b using the configuration
model [23], [24] as implemented in the Python NetworkX
package [25, ver. 1.11]. Starting from an initial infected node,
we then ran outbreaks using a basic Susceptible-Infected
model [26], [27], [28] under two different transmission
regimes:

(i) uniform transmission without contact volume depen-
dence: transmission probability β = 0.01 is held
constant across all nodes;

(ii) alter-dependent transmission with contact volume de-
pendence: each ego i has a per-alter transmission
probability βi = Ci/r inversely proportional to alter
rank r, similarly to Fig. 5.

To set equal the expected number of secondary infections
from an infected node across experiments, we choose

Ci =
ni

H(ni)
β (1)

where H(ni) is the harmonic number and ni is the number
of alters of ego i. Furthermore, inspired by the trends shown
in Fig. 4, we defined alter rank in the model network by
the outdegree of the alter, so that the highest-ranked alters
were the least “famous”. Recognizing that this represents
a particularly strong version of the contact volume–alter
rank relationship where high-ranked alters are always more
famous, we also introduced a parameter p which controls the
strength of this effect: For each potential infection during an
outbreak, we infected a new node as per scenario (i) with
probability 1 − p and otherwise as per scenario (ii) with
probability p. This has the effect of adding some random-
ness into the contact volume-alter relationship, making the
ranking less strictly enforced in the numerical experiments.
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Fig. 5: Contact volume (number of at-mentions, number of calls/text messages) versus alter rank. Note that the two plots have
different aspect ratios and that the dashed guideline has the same slope for both: Contact volume = C× (Alter rank)−1.2.
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Fig. 6: Number of ego-alter dyads across alter ranks.

Overall, scenario (i) provides a baseline and comparative
control, while scenario (ii) captures rough approximations
of the dynamical ingredients we have observed here.

We ran 100 independent simulations of 20 time steps of an
outbreak using synchronous updating on the same network,
starting from a single infected node. Figure 7 shows the
results without contact volume p = 0 (red), with contact vol-
ume relationship p = 1 (blue), and for an intermediate value
p = 0.75 (green). Error bars show 95% confidence intervals
on the simulation averages. Despite the two different models
having the same expected number of secondary infections
from any infected node, the contact volume dependence
dramatically reduces the rate of information propagation over
the network, as high-degree nodes are much less likely to
become infected by a low-degree node.

RELATED WORK

The key observation of the friendship paradox is that, be-
cause highly popular individuals are over-represented across
the sets of alters of egos, the average degree of alters is right-
skewed, leading to the colloquial “your friends have more
friends than you” [1]. Perceptions can be biased because of
the paradox [15] and and personality traits which correlate
with network degree, such as extroversion [14] will be
influenced by the paradox.

The original observations of the friendship paradox have
led to a number of papers investigating it and similar
paradoxes and how they affect the views of individuals
within a social network. The original author showed that the
variation in classroom sizes exhibits [2], while Ugander et
al. showed that the friendship paradox exists at a very large
scale through analyzing the anatomy of the Facebook social
graph [10]. Generalizations of the friendship paradoxes have
also been studied [29]. That work shows that any observable
quantity which correlates with degree will be biased in
the same way as degree itself. Interestingly, the friendship
paradox has also been proposed as an exploitable feature of
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Fig. 7: Epidemic curves for friendship paradox with (blue) and without (green) contact volume dependence.

networks. Christakis and Fowler used the friendship paradox
to suggest a social monitoring system for early detection
of influenza outbreaks [30]. They also investigated this in
Twitter data for information propagation [31]. Dynamics of
communication have been studied via telecommunications
data by many researchers. For example, Karsai et al. and
Borge-Holtheofere et al. studied bursty communication dy-
namics and information transfer in mobile phone and other
datasets [32], [33], [34], including egocentric networks [35]
but did not investigate the friendship paradox. To the best
of our knowledge, research has not jointly investigated the
relationships between contact volume or other individuals’
contact behavior with the friendship paradox and its effects.

The work which is perhaps most similar to our own is the
work of Hodas et al. [8]. They showed that, not only does the
paradox hold in Twitter, it is very strong, affecting ≈ 99%
of egos, as we also found. In addition, they investigated
several other related paradoxes, including that alters are
more active (activity paradox) and that alters are exposed
to more viral tweet content (virality paradox). This shows
that both the structure of the Twitter follower graph and the
dynamics of viral content are influenced by paradoxes such
as the friendship paradox. Their work was limited to Twitter
only and considered numbers of tweets and retweets, but
unlike the work here did not investigate contact volume (at-
mentions) between users.

Most work on the friendship paradox has been structural in
nature, comparing the static degrees of egos and alters. Yet,
social networks host dynamic activity patterns, and egos will
maintain very different levels of contact among their social
ties, due to differing degrees of social intimacy, cognitive
limits on the size of a social network, and simply because of
time constraints: there are only so many hours in the day. The
work we present here moves beyond the static network and
strengthens the connections between the friendship paradox,
the strength of weak ties, and Dunbar’s number.

CONCLUSIONS

We have investigated how the strength of the friendship
paradox relates to contact volume between individuals in two
real, social network datasets. Specifically, we have found
that while “your friends are more famous than you” holds
on average in the overwhelming majority of cases, this
effect is in general far less pronounced for your “closest
friends” or most frequently contacted social ties. Instead,
more distant friends are more often the main drivers of the
friendship paradox. In general, more frequently contacted
alters are of lower outdegree, and conversely an ego’s “hub
alter”, the highest outdegree alter, is more likely to be
less frequently contacted by the ego. Using a conceptual
Susceptible-Infected (SI) model of information transmission
we demonstrated numerically that the contact volume-alter
rank inverse relationship can reduce the rate of information
transfer over the network. Future work will look in more de-
tail at the content of the messages passing between egos and
alters with a view towards characterizing social information
flow.

The contact volume-outdegree relationship may be rele-
vant in epidemiology, where “acquaintance immunization”
[36] has been shown to be an effective strategy. If individuals
actually end up immunizing their closest, or high-contact
volume alters, then this immunization strategy may in fact
turn out to be less effective than if they immunized more
distant friends.

Online communication provides the means to vastly in-
crease the apparent size of a user’s social circle, leading to
information overload from the social inputs of all the newly
available alters. Yet, if egos preferentially contact the lowest
degree alters as we have studied, then this information over-
load may be attenuated. Further investigation of information
transfer under this relationship is warranted, in particular
how it may relate to the formation of filter bubbles or echo
chambers.
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