
Information flow reveals prediction limits in online social activity

James P. Bagrow1,2,*, Xipei Liu1,2, and Lewis Mitchell1,2,3

1Department of Mathematics & Statistics, University of Vermont, Burlington, VT, United States
2Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States
3School of Mathematical Sciences, North Terrace Campus, The University of Adelaide, SA 5005, Australia
*Corresponding author. Email: james.bagrow@uvm.edu, Homepage: bagrow.com

August 15, 2017

Abstract Modern society depends on the flow of information over online social networks, and
popular social platforms now generate significant behavioral data. Yet it remains unclear what
fundamental limitsmay existwhen using these data to predict the activities and interests of individuals.
Here we apply tools from information theory to estimate the predictive information content of the
writings of Twitter users and to what extent that information flows between users. Distinct temporal
and social effects are visible in the information flow, and these estimates provide a fundamental
bound on the predictive accuracy achievable with these data. Due to the social flow of information,
we estimate that approximately 95% of the potential predictive accuracy attainable for an individual
is available within the social ties of that individual only, without requiring the individual’s data.

The flow of information in online social platforms is now a significant factor in protest movements,

national elections, and rumor and misinformation campaigns [1, 2, 3]. Data collected from these platforms

are a boon for researchers [4] but also a source of concern for privacy, as the social flow of predictive

information can reveal details on both users and non-users of the platform [5]. Information flow on social

media has primarily been studied structurally (for example, by tracking themovements of keywords [2, 6, 7, 8]

or adoptions of behaviors [9, 10, 11]) or temporally, by applying tools from information theory to quantify the

information contained in the timings of user activity, as temporal relationships between user activity reflect

underlying coordination patterns [12, 13]. Yet neither approach considers the full extent of information

available, both the complete language data provided by individuals and their temporal activity patterns.

Here we unify these two primary approaches, by applying information-theoretic estimators to a collection of

Twitter user activities that fully incorporate language data while also accounting for the temporal ordering

of user activities.
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We gathered a dataset of n = 927 users of the Twitter social media platform. Users were selected who

wrote in English, were active for at least one year, and had comparably sized social networks. We applied

both computational tools and human raters to help avoid bots and non-personal accounts. For each user, we

retrieved all of their public posts excluding retweets (up to the 3200 most recent public posts, as allowed by

Twitter). Examining these texts, we determined each user’s 15 most frequent Twitter contacts and gathered

the texts of those users as well, providing us ego-alter pairs. See Supporting Material (SM) for full details

on data collection, filtering, and processing.

The ability to accurately profile and predict individuals is reflected in the predictability of theirwritten text.

The predictive information contained within a user’s text can be characterized by three related quantities, the

entropy rate h, the perplexity 2h, and the predictabilityΠ. The entropy rate quantifies the average uncertainty

one has about future words given the text one has already observed (Fig. 1A). Higher entropies correspond

to less predictable text and reflect individuals whose interests are more difficult to predict. In the context

of language modeling, it is also common to consider the perplexity. While the entropy rate specifies how

many bits h are needed on average to express subsequent words given the preceding text, the perplexity tells

us that our remaining uncertainty about those unseen words is equivalent to that of choosing uniformly at

random from among 2h possibilities. For example, if h = 6 bits (typical of individuals in our dataset), the

perplexity is 64 words, a significant reduction from choosing randomly over the entire vocabulary (social

media users have≈5000-word vocabularies on average; see SM). Lastly, the predictabilityΠ, given via Fano’s

inequality [14], is the probability that an ideal predictive algorithm will correctly predict the subsequent

word given the preceding text. Repeated, accurate predictions of future words indicate that the available

information can be used to build profiles and predictive models of a user and estimating Π allows us to

fundamentally bound the usefulness of the information present in a user’s writing without depending on the

results of specific predictive algorithms.

Information theory has a long history of estimating the information content of text [15, 16, 17, 18].

Crucially, information is available not just in the words of the text but in their order of appearance. We

applied a nonparametric entropy estimator that incorporates the full sequence structure of the text [18]. This

estimator has been proved to converge asymptotically to the true entropy rate for stationary processes and

has been applied to human mobility data [19]. See SM for details.
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Figure 1: Information and predictability in online social activity. (A) A user posts written text over time and we would
like to predict their subsequent words given their past writing. Treating each user’s posts as a contiguous text stream,
the entropy rate tells us how uncertain we are about a user’s future writing given their past. To study information flow,
the cross-entropy rate tells us how much information about the future text of one user (the ego) is present in the past
text of another user (the alter). (B) Most users have entropies and predictabilities in a well-defined range, whereas the
cross-entropies and associated predictabilities indicate a broad variety of social information flow levels. (C) Predictive
information may be available in the pasts of multiple alters, so we computed the cumulative cross-entropy as we
included more alters in order of most to least frequently contacted. (D) As the past activities of more alters are used to
predict the ego, more information is available and the entropy drops and predictability rises. Including the ego’s past
with the alters shows that the alters provided non-redundant predictive information. (E) Extrapolating beyond our data
window estimates the prediction limit Π∞ of online activity.

The text streams of the egos were relatively well clustered around h ≈ 6.6 bits, with most falling between

5.5–8 bits (Fig. 1B). Equivalently, this corresponds to a perplexity range of ≈45–256 words, far smaller than

the typical user’s ≈5000-word vocabulary, and a mean predictability of ≈53%, quite high for predicting a

given word out of ≈5000 possible words on average. We found this typical value of information comparable

to other sources of written text, but social media texts were more broadly distributed—individuals were more

likely to be either highly predictable or highly unpredictable compared with formally written text (see SM).

Next, instead of asking howmuch information is present in what the ego has previously written regarding

what the ego will write in the future, we ask howmuch information is present on average in what the alter has

previously written regarding what the ego will write in the future (Fig. 1A). If there is consistent, predictive
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information in the alter’s past about the ego’s future, especially beyond the information available in the ego’s

own past, then there is evidence of information flow.

Replacing the ego’s past writing with the alter’s past converts the entropy to the cross-entropy (see SM).

The cross-entropy is always greater than the entropy when the alter provides less information about the ego

than the ego, and so an increase in cross-entropy tells us how much information we lose by only having

access to the alter’s information instead of the ego’s. Indeed, estimating the cross-entropy between each

ego and their most frequently contacted alter (Fig. 1B), we saw higher cross-entropies spanning from 6–12

bits (equivalently, perplexities from 64–4096 words or predictabilities spread from 0–60%). While less

frequently contacted alters provided less predictive information than alters in close contact (see SM), even

for the closest alters there was a broader range of cross-entropies than the entropies of the egos themselves.

This implies a diversity of social relationships: sometimes the ego is well informed by the alter, leading to a

cross-entropy closer to the ego’s entropy, while other times the ego and alter exhibit little information flow.

Thus far we have examined the information flow between the ego and individual alters, but actionable

information regarding the future of the ego may be embedded in the combined pasts of multiple alters

(Fig. 1C). To address this, we generalized the cross-entropy estimator to multiple text streams (see SM).

We then computed the cross-entropies and predictabilities as we successively accumulated alters in order

of decreasing contact volume (Fig. 1D). As more alters were considered, cross-entropy decreased and

predictability increased, which is sensible as more potential information is available. Interestingly, with 8–9

alters, we observed a predictability of the ego given the alters at or above the original predictability of the ego

alone. As more alters were added, up to our data limit of 15 alters, this increase continued. Paradoxically,

this indicated that there is potentially more information about the ego within the total set of alters than within

the ego itself.

To understand this apparent paradox, we need to address a limitation with the above analysis: it does not

incorporate the ego’s own past information. It may be that the information provided by the alters is simply

redundant when compared with that of the ego. Therefore, we simply included the ego’s past alongside the

alters, generalizing the estimator to an entropy akin to a transfer entropy [20, 21], a common approach to

studying information flow. This entropy is computed in the “Alters and ego” curves in Fig. 1D. A single

alter provided a small amount of extra information beyond that of the ego, ≈1.9% more predictability. This
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provided us a quantitative measure of the extent of information flow between individual users of social media

Beyond the most frequently contacted alter, as more alters were added this extra predictability grew: at 15

alters and the ego there was ≈6.9% more predictability than via the ego alone. Furthermore, the information

provided by the alters without the ego is strictly less than the information provided by the ego and alters

together, resolving the apparent paradox.

However, this extra predictability also appeared to saturate, and eventually adding more alters will not

provide extra information. This observation is compatible with Dunbar’s number which uses cognitive limits

to argue for an upper bound on the number of meaningful ties an ego can maintain (≈150 alters) [22]. The

question now becomes, given enough ties what is the upper bound for the predictability?

To extrapolate beyond our data window, we fitted a nonlinear saturating function to the curves in Fig. 1D,

(see SM for details and validation of our extrapolation procedure). From fits to the raw data, we found

a limiting predictability given the alters of Π∞ = 60.8% ± 0.691% (Fig. 1E). Of course, egos will not

have an infinite number of alters, so a more plausible extrapolation point may be to Dunbar’s number:

Π150 ≈ 60.3%, within the margin of error for Π∞, indicating that saturation of predictive information has

been reached. Similarly, extrapolating the predictability including the ego’s past gives Π∞ = 64.0%±1.54%

(Π150 = 63.5%).

These extrapolations showed that significant predictive information was available in the combined social

ties of individual users of social media. In fact, there is so much social information that an entity with

access to all social media data will have only slightly more potential predictive accuracy (≈64% in our case)

than an entity which has access to the activities of an ego’s alters but not to that ego (≈61%). This may

have distinct implications for privacy: if an individual forgoes using a social media platform or deletes her

account, yet her social ties remain, then that platform owner potentially possesses 95.1% ± 3.36% of the

achievable predictive accuracy of the future activities of that individual.

Two issues can affect the cross-entropy as a measure of information flow. The first is that the predictive

information may be due simply to the structure of English: commonly repeated words and phrases will

represent a portion of the information flow. The second is that of a common cause: egos and alters may be

independently discussing the same concepts. This is particularly important on social media with its emphasis

on current events [23].
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To study these issues, we constructed two types of controls. The first randomly pairs users together

by shuffling alters between egos. The second constructed pseudo-alters by assembling, for each real alter,

a random set of posts made at approximately the same times as the real alter’s posts, thus controlling for

temporal confounds. Both controls used real posted text and only varied the sources of the text. As shown in

Fig. 1D, the real alters provided more social information than either control. There was a decrease in entropy

as more control alters were added, but the control cross-entropy remained above the real cross-entropy. We

also observed that for a single alter the temporal control had a lower cross-entropy than the social control

and therefore temporal effects provide more information than social effects (underscoring the role of social

media as a news platform [23]), although both controls eventually converge to a limiting predictability of

≈51%.

Given the importance of temporal information in online activity, to what extent is this reflected in the

information flow? Do recent activities contain most of the predictive information or are there long-term

sources of information? To estimate recency effects, we applied a censoring filter to the ego’s text stream,

removing at each time period the text written in the previous ∆T hours and measuring how much the mean

predictability decreased compared with the mean predictability including the recent text. Increasing ∆T

decreased Π, especially evident when removing the first 3–4 hours (Fig. 2A): we found an average decrease

in predictability of ≈1.4% at 4 hours. This loss in predictability relative to the uncensored baseline is

comparable to the gain from the rank-1 alter we observed in Fig. 1D. In other words, close alters tended to

contain a quantity of information about the ego comparable to the information within just a few hours of the

ego’s own recent past. Beyond 24 hours the predictability loss continued approximately linearly (SM). We

then applied this censoring procedure to the alters alone and the alters combined with the ego, excluding their

recent text and measuring how the cross predictability changed on average from their respective baselines.

We found a similar drop in predictability during the first few hours, but then a more level trend than when

censoring the ego alone. This leveling off showed that less long-term information was present in the alters’

pasts than within the ego’s.

Next we studied recency by the activity frequencies of alters and egos. Individuals who post frequently to

social media, keeping up on current events, may provide more predictive information about either themselves

or their social ties than other, infrequent posters. We found that the self-predictability of users was actually

6



0 5 10 15 20 25
T [hours]

2.0

1.5

1.0

0.5

0.0

Ch
an

ge
 in

 p
re

di
ct

ab
ilit

y 
[%

]

A

Given ego

Given alters

Given alters and ego

0 2 4 6 8
Posts / day (ego)

40

60B

0 2 4 6 8
Posts / day (alter)

20

40

Pr
ed

ict
ab

ilit
y 

gi
ve

n 
al

te
r [

%
]

Figure 2: Recency of information. (A) Removing the most recent ∆T hours of activity, most predictive information
about the ego is contained in the most recent 3–4 hours (shaded region). In all cases information extends backwards
beyond these time intervals, but the ego contains more long-range past information than the combined alters alone.
(B) Egos who post more frequently are more predictable from their alter than egos who post less frequently, whereas
frequently posting alters provide less information about their egos than alters who post less often.

independent of activity frequency (SM) but there were strong associations between activity frequency and

social information flow: egos who posted 8 times per day on average were ≈17% more predictable given

their alters than egos who posted once per day on average (Fig. 2B). Interestingly, this trend reversed itself

when considering the activity frequencies of the alters: alters who posted 8 times per day on average were

≈23% less predictive of their egos than alters who posted once per day on average. Highly active alters

tended to inhibit information flow, perhaps due to covering too many topics of low relevance to the ego.

Information flow reflects the social network and social interaction patterns (Fig. 3). We measured

information flow for egos with more popular alters compared with egos with less popular alters. Alters with

more social ties provided less predictive information about their egos than alters with fewer ties (Fig. 3A).

The decrease in predictability of the ego was especially strong up to alters with ≈400 ties, where the bulk
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Figure 3: Social interactions are visible in information flow. (A) Alters with more social ties of their own provided
less information about the ego than less popular alters. (B) Information flow captures directionality in relationships,
a key factor in social dynamics. Alters who often contact the ego provide more predictive information about the ego
than alters who rarely mention the ego. Yet, if the ego frequently mentions the alter, it does not necessarily mean the
alter will provide more predictive information about the ego.

of our data lies, but the trend continued beyond this as well. This decreasing trend belies the power of hubs

in many ways: while hubs strongly connect a social network topologically [24], limited time and divided

attention across their social ties bounds the alter’s ability to participate in information dynamics mediated

by the social network and this is reflected in the predictability.

Reciprocated contact is an important indicator of social relationships [25], especially in online social

activity where so much communication is potentially one-sided [23]. In Fig. 3B we investigated how

directionality in contact volume, how often the ego mentions the alter and vice versa, related to information

flow. We found that the ego was more predictable given the alter for those dyads where the alter more

frequently contacted the ego, but there was little change across dyads when the ego mentioned the alter

more or less frequently (Fig. 3B). We also observed a similar trend for information flow but in reverse, when

predicting the alter given the ego (SM). These trends captured the reciprocity of information flow: an alter

frequently contacting an ego will tend to give predictive information about the ego, but the converse is not
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true: an ego can frequently contact her alter but that does not necessarily mean that the alter will be any

more predictive, as evidenced by the flat trend in Fig. 3B.

In summary, the ability to repeatedly and accurately predict the text of individuals provides considerable

value to the providers of social media, allowing them to develop profiles to identify and track individuals [26,

27] and even manipulate information exposure [28]. That information is so strongly embedded socially

underscores the power of the social network: by knowing who are the social ties of an individual and

what are the activities of those ties, our results show that one can in principle accurately profile even those

individuals who are not present in the data [5].

The time-ordered cross-entropy (Fig. 1A) applied here to online social activity is a natural, principled

information-theoretic measure that incorporates all the available textual and temporal information. While

weaker than full causal entailment, by incorporating time ordering we identify social information flow as

the presence of useful, predictive information in the past of one’s social tie beyond that of the information in

one’s own past. Doing so closely connects this measure with Granger causality and other strong approaches

to information flow [29, 20].

Acknowledgments Wegratefully acknowledge the resources provided by theVermontAdvancedComputing
Core. This material is based upon work supported by the National Science Foundation under Grant No.
IIS-1447634. LM acknowledges support from the Data To Decisions Cooperative Research Centre (D2D
CRC), and the ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS).

References
[1] C. Shirky. The political power of social media: Technology, the public sphere, and political change.

Foreign affairs, pages 28–41, 2011. 1

[2] G. Lotan, E. Graeff, M. Ananny, D. Gaffney, I. Pearce, et al. The revolutions were tweeted: Information
flows during the 2011 Tunisian and Egyptian revolutions. International journal of communication,
5:31, 2011. 1

[3] M. Del Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G. Caldarelli, H. E. Stanley, and W. Quattro-
ciocchi. The spreading of misinformation online. Proceedings of the National Academy of Sciences,
page 201517441, 2016. 1

[4] D. Lazer, A. S. Pentland, L. Adamic, S. Aral, A. L. Barabasi, D. Brewer, N. Christakis, N. Contractor,
J. Fowler, M. Gutmann, et al. Computational social science. Science, 323(5915):721, 2009. 1

9



[5] D. Garcia. Leaking privacy and shadow profiles in online social networks. Science Advances, 3(8),
2017. 1, 9

[6] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In
Proceedings of the 13th international conference on World Wide Web, pages 491–501. ACM, 2004. 1

[7] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information diffusion.
In Proceedings of the 21st international conference on World Wide Web, pages 519–528. ACM, 2012.
1

[8] E. Bakshy, S. Messing, and L. A. Adamic. Exposure to ideologically diverse news and opinion on
Facebook. Science, 348(6239):1130–1132, 2015. 1

[9] S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-based contagion from
homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences,
106(51):21544–21549, 2009. 1

[10] D. Centola. The spread of behavior in an online social network experiment. Science, 329(5996):1194–
1197, 2010. 1

[11] S. Aral and D. Walker. Identifying influential and susceptible members of social networks. Science,
337(6092):337–341, 2012. 1

[12] G. Ver Steeg and A. Galstyan. Information transfer in social media. In Proceedings of the 21st
international conference on World Wide Web, pages 509–518. ACM, 2012. 1

[13] J. Borge-Holthoefer, N. Perra, B. Gonçalves, S. González-Bailón, A. Arenas, Y.Moreno, andA. Vespig-
nani. The dynamics of information-driven coordination phenomena: A transfer entropy analysis.
Science Advances, 2(4):e1501158, 2016. 1

[14] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2012. 2

[15] C. E. Shannon. Prediction and entropy of printed english. Bell Labs Technical Journal, 30(1):50–64,
1951. 2

[16] P. F. Brown, V. J. D. Pietra, R. L. Mercer, S. A. D. Pietra, and J. C. Lai. An estimate of an upper bound
for the entropy of english. Computational Linguistics, 18(1):31–40, 1992. 2

[17] T. Schürmann andP.Grassberger. Entropy estimation of symbol sequences. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 6(3):414–427, 1996. 2

[18] I. Kontoyiannis, P. Algoet, Y.M. Suhov, and A.Wyner. Nonparametric entropy estimation for stationary
processes and random fields, with applications to english text. IEEE Transactions on Information
Theory, 44(3):1319–1327, May 1998. 00104. 2

[19] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási. Limits of predictability in human mobility. Science,
327(5968):1018–1021, 2010. 2

[20] T. Schreiber. Measuring information transfer. Physical Review Letters, 85(2):461, 2000. 4, 9

[21] M. Staniek and K. Lehnertz. Symbolic transfer entropy. Physical Review Letters, 100(15):158101,
2008. 4

10



[22] R. I. Dunbar. Coevolution of neocortical size, group size and language in humans. Behavioral and
brain sciences, 16(4):681–694, 1993. 5

[23] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In
Proceedings of the 19th international conference on World wide web, pages 591–600. ACM, 2010. 5,
6, 8

[24] R. Albert, H. Jeong, and A.-L. Barabasi. Error and attack tolerance of complex networks. Nature,
406(6794):378–382, 2000. 8

[25] S. Wasserman and K. Faust. Social network analysis: Methods and applications. Cambridge university
press, 1994. 8

[26] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in the crowd: The privacy
bounds of human mobility. Scientific reports, 3:1376, 2013. 9

[27] Y.-A. DeMontjoye, L. Radaelli, V. K. Singh, et al. Unique in the shopping mall: On the reidentifiability
of credit card metadata. Science, 347(6221):536–539, 2015. 9

[28] E. Pariser. The filter bubble: What the Internet is hiding from you. Penguin UK, 2011. 9

[29] C. W. Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: Journal of the Econometric Society, pages 424–438, 1969. 9

11



Supporting Material for “Information flow reveals prediction limits
in online social activity”
James P. Bagrow1,2,*, Xipei Liu1,2, and Lewis Mitchell1,2,3

1Department of Mathematics & Statistics, University of Vermont, Burlington, VT, United States
2Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States
3School of Mathematical Sciences, North Terrace Campus, The University of Adelaide, SA 5005, Australia
*Corresponding author. Email: james.bagrow@uvm.edu, Homepage: bagrow.com

August 15, 2017

Contents
S1 Dataset details S2

S1.1 Filtering and rating procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2
S1.2 Text processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3

S2 Control procedures S3
S3 Estimators for entropy, cross-entropy, and cumulative cross-entropy S3

S3.1 Entropy (with and without correlations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3
S3.2 Cross-entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4
S3.3 Cumulative cross-entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5
S3.4 Estimator convergence on our data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5

S4 Extrapolating cross-entropy and predictability S6
S5 Supporting results S8

S5.1 Vocabulary sizes on social media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S8
S5.2 Information content on social media compared with formal written text . . . . . . . . . . . . S9
S5.3 A censoring filter to determine long-range information in the egos and alters . . . . . . . . . S10
S5.4 Posting frequency and predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S10
S5.5 Contact volumes and predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S12
S5.6 Information homophily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S13
S5.7 Reciprocity and information flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S13
S5.8 Interrelations between information-theoretic quantities . . . . . . . . . . . . . . . . . . . . S14

List of figures
S1 Correlations in the text account for ≈3 additional bits of information . . . . . . . . . . . . . S4
S2 Cross-entropy and predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5
S3 Convergence of the entropy estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S6
S4 Convergence of the cross-entropy estimator . . . . . . . . . . . . . . . . . . . . . . . . . . S7
S5 Extrapolating cross-entropy and predictability . . . . . . . . . . . . . . . . . . . . . . . . . S8
S6 Extrapolations and residuals for the predictability functions . . . . . . . . . . . . . . . . . . S8
S7 Distributions of Twitter ego vocabulary size . . . . . . . . . . . . . . . . . . . . . . . . . . S9

S1



S8 Entropy distributions for social and formal text . . . . . . . . . . . . . . . . . . . . . . . . S10
S9 Alters provided less long-range information about the ego than the ego itself . . . . . . . . . S11
S10 Self-predictabilities are independent of posting frequency . . . . . . . . . . . . . . . . . . . S11
S11 Association between cross-predictability and posting frequency holds for all alters . . . . . . S12
S12 Less frequently contacted ties provide less predictive information . . . . . . . . . . . . . . . S12
S13 An “information homophily” between egos and alters . . . . . . . . . . . . . . . . . . . . . S13
S14 Reciprocated information flows are captured in both directions . . . . . . . . . . . . . . . . S14

List of tables
S1 Entropy rates of some example texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9
S2 Cross-entropy and KL-divergence are strongly correlated . . . . . . . . . . . . . . . . . . . S15

S1 Dataset details
We selected a random sample of individuals for study from the Twitter 10% Gardenhose feed collected
during the first week of April 2014. From this we uniformly sampled individuals who had tweeted in English
(as reported by Twitter in the metadata for each tweet) during this time period and had 50–500 followers,
as reported in the feed metadata. The lower follower cutoff is to avoid inactive and bot accounts while the
higher cutoff is to ensure that individuals in our sample have comparably-sized egonetworks and to avoid
studying unusually popular outlier accounts such as celebrity accounts. For each user we then collected
their complete public tweet history excluding retweets (up to 3200 most recent public messages, as allowed
by Twitter’s Public REST API limit [1]). As discussed below, we then applied to these users a filtering
procedure including both computational tools and human raters to help ensure sufficient data on individual
activities and to limit bots and non-individual accounts from our sample (Sec. S1.1). When finished, we
retained a final sample of n = 927 individual egos and their top-15 alters (n = 13, 905 total users).

For each initially sampled ego, we collected the user IDs of the account whom the ego “at-mentioned”
most frequently in their public tweets, forming the rank-1 alter. Mentions are a stronger signal than simply
Twitter following, as it demonstrates active communication on the behalf of at least one of the individuals of
a social tie. As was done with the egos, the REST API was then used to retrieve the complete public tweet
history of this alter. Examining the messages of the (ego, rank-1 alter) dyad, we retained egos where the
ego’s tweets covered at least a one-year period, the alter’s tweets covered at least a one year period, and the
ego at-mentioned at least 15 unique Twitter users (including the rank-1 alter).

For dyads who satisfied these criteria we collected the full public messages of the remaining 14 most
at-mentioned alters, giving us the full public activities of the ego and his or her top-15 most mentioned alters.

S1.1 Filtering and rating procedure
To limit the effects of bots and non-personal accounts, we moved beyond the basic filtering criteria listed
above and employed both computational tools and human raters to examine the accounts of the egos in our
dataset. These tools were applied in April 2017. A small number of accounts in our sample were suspended
or deleted after our data collection period and were not available to be examined, so we simply retained
these unrated accounts in our sample. We used the botometer1 API [2, 3, 4, 5] to score the probability
that an ego account was a bot, and eliminated n = 46 accounts that scored above 50%. This tool examines

1https://botometer.iuni.iu.edu/
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Twitter accounts along a number of dimensions to estimate the likelihood the account belongs to a bot. Next,
we asked human raters to examine the accounts and report whether the account appeared to belong to a
real person or a non-personal entity such as a corporation or a bot. Two independent raters examined each
account’s Twitter homepage if available. We removed n = 84 accounts where both raters agreed the account
did not belong to an individual, beyond those already flagged by the botometer scores. Raters were recruited
on Amazon Mechanical Turk and compensated at a rate of $0.10 per three Twitter accounts. Lastly, we also
removed a small number of accounts (n = 31) showing convergence issues with our entropy estimators, as
inferred by negative KL-divergences from the ego to the alter or vice versa. (See also our full convergence
analysis in Sec. S3.4.) This gave our final sample size of n = 927 egos and their top-15 associated alters.

S1.2 Text processing
To apply the entropy estimators discussed in Sec. S3, we first need to process and tokenize the texts of users.
The UTF-8 encoded text of each user was processed by removing casing, punctuation (except for twitter
specific “@” and “#” symbols), and URLs (identified as words beginning with “http://” or “https://”). All
tweet texts were concatenated into a single text string in time order (based on the tweet timestamps), except
for “retweets” which were all excluded in order to focus on the effect of shared language and avoid artificially
inflating predictability scores. The text was then tokenized into words by segmenting on whitespace.

S2 Control procedures
We performed two controls for the cross-entropy experiments: random tweets or “temporal control” and
random alters or “social control”. For the temporal control we constructed proxy tweet streams for the alters
which preserved the approximate times at which alters had written messages. To do this we substituted for
each real alter tweet a randomly sampled English-language tweet posted during the same hour as the real
alter tweet. The randomly sampled replacement tweets were taken from the 10% Gardenhose feed.

In the social control we randomized the ego networks, swapping the tweet text streams of true alters with
those of randomly chosen alters. This control does not preserve the times at which the original alters had
authored tweets, hence the use of the previous temporal control.

S3 Estimators for entropy, cross-entropy, and cumulative cross-entropy
S3.1 Entropy (with and without correlations)
The entropy (rate) h of a sequence of words is the number of bits needed to encode the next word, on average,
given past words. Kontoyianni et al. [6] proved convergence for a nonparametric estimator ĥ for h:

ĥ =
N log N
∑N

i=1Λi

, (1)

where N is the length of the sequence of words and Λi is the match length of the prefix at position i, i.e.,
it is the length of the shortest subsequence (of words) starting at i that has not previously appeared. (All
logarithms are base 2.) If the sequence of words were randomly shuffled, breaking any long-range structure,
this estimator converges to the traditional Shannon entropy on unigrams (Fig. S1).

The ideas underlying estimators such as Eq. (1) play an important role in the mathematics of data
compression algorithms. Indeed, some authors have used practical compression software to estimate the
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Figure S1: Correlations in the text account for
≈3 additional bits of information. The uncor-
related entropy (considering only the relative
frequencies of words posted by Twitter users)
is approximately 3 bits higher than the corre-
lated entropy as estimated from Eq. 1.

information content of a text. However, such estimates tend to be biased, as specific compression imple-
mentations (such as gzip) tend to sacrifice small amounts of extra compression in order to run much more
efficiently. Due to these approximations it is important to work directly with the theoretical estimator to
more accurately estimate h, as we have when we applied Eq. (1).

S3.2 Cross-entropy
To generalize Eq. (1) to a cross-entropy between two sequences A and B, define the cross-parsed match
length Λi(A|B) as the length of the shortest subsequence starting at position i of sequence A not previously
seen in sequence B. If sequences A and B are time-aligned, as in timestamped social media posts, then
‘previously’ refers to all the words of B written prior to ti(A), the time when the ith word of A was posted,
according to the timestamp of the respective tweet. The estimator for the cross-entropy rate is then

ĥ×(A | B) = NA log NB∑NA

i=1 Λi(A | B)
, (2)

where NA and NB are the lengths of A and B, respectively. An estimator of the relative entropy (or KL-
divergence) similar to Eq. (2) was introduced by Ziv and Merhav [7]. The log term in Eq. (2) has changed
to log NB because now B is the “database” (or window, in Lempel-Ziv terms) we are searching over when
we compute the match lengths; the NA factor is due to the average of the Λi’s taking place over A. The
cross-entropy tells us how many bits on average we need to encode the next word of A given the information
previously seen in B. Further, ĥ×(A | A) = ĥ. The cross-entropy can be applied directly to an ego-alter pair
by choosing B to be the text stream of the alter and A the text stream of the ego.

The cross-entropy can also be associated with the predictability by applying Fano’s Inequality [8]. Fano’s
Inequality relies on both the entropy and the cardinality of the random variable; here we take the size of the
ego’s unique vocabulary as this is the variable we are trying to predict. In Fig. S2 we present the relationship
between cross-entropy and predictability for our data comparedwith solid lines denoting constant vocabulary-
size curves. The predictability of the ego given the alter is lower than the predictability of the ego given
the ego because the cross-entropy is greater than the entropy, capturing the increased uncertainty (decreased
information) we have by trying to predict the ego given the alter instead of the ego.
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Figure S2: Cross-entropy ĥ×(ego | alter) and
predictability Π across different ego vocabu-
lary sizes.

S3.3 Cumulative cross-entropy
We now wish to generalize the cross-entropy to ĥ×(A | B), estimating the average amount of information
needed to encode the next word of sequence A given the information in a set of sequencesB. The cross-parsed
match length for a set of databases is Λi(A | B) = max{Λi(A | B), B ∈ B}, i.e. we take the longest match
length over any of the sequences in B. This cross-parsing implies a new log NAB factor in the estimator,
where NAB is the average of the lengths NB (B ∈ B), weighted by the number of times matches were found
in each sequence B ∈ B. (If the same match length occurs for more than one sequence B ∈ B then each
such sequence receives a weight in the average.) The estimator is

ĥ×(A | B) = NA log NAB∑NA

i=1 Λi(A | B)
, (3)

where NAB =
∑

B∈B wBNB
/∑

B∈B wB and wB is the number of times that matches from A are found in
B ∈ B. Note that ∑B wB ≥ NA due to possible ties, with equality holding if no ties occur. Note that Eq. (3)
reduces to Eq. (2) when |B | = 1.

Equation (3) lets us build the cumulative cross-entropy by appropriate choices of B. In the main text
we sequentially added alters to the set B in order of decreasing contact volume (i.e., B = {alters}), to
understand how information grows as more alters are made available. Likewise, Eq. (3) lets us build the
transfer entropy-like measures2 discussed in the main text by additionally including the ego within the set B
(i.e., B = {ego} ∪ {alters}).

S3.4 Estimator convergence on our data
The estimator given by Eq. (1) has been proven to converge asymptotically under stationarity assumptions [6].
However, our data are finite, and so we investigated the convergence properties of the estimator empirically
(Fig. S3). In general, we observed that the entropy saturates after around 1000 tweets (approximately 10,000
words).

For the cross-entropy estimator h×(A | B), we examined the convergence over the lifespan or timewindow
within which the ego has authored tweets. Figure S4 shows the convergence of the cross-entropy for the

2Note that this is not truly a transfer entropy because transfer entropy is defined based on the conditional entropy [9] whereas
here we still construct a cross-entropy.

S5



0 20 40 60 80 100
Cutoff [% of ego's text]

2
3
4
5
6
7
8
9

En
tro

py
 a

t c
ut

of
f [

bi
ts

]
2 1 0 1

log10( 2/ 1)

0

20

40

60

80

100

120

Co
un

t

50/50
20/80

Figure S3: Convergence of the entropy estimator. (left) The estimator of egos generally saturates well within our data
window, as evidenced by the flattening of the entropy estimate as we examine more of the ego’s text. (right) Here we
compute the variance of each ego’s entropy over two portions of the curves shown to the left. In one distribution we
compare the variance of the final 50% of the data to the initial 50%, while in the other distribution we compare the
variance of the final 20% of the data to the initial 80%. The latter shows a significantly smaller variability than the
former, underscoring how much the entropy estimates have settled down by the end of our data window. In the left plot
we show a random selection of egos, while the distributions on the right cover all dyads in our dataset.

rank-1 alter h×(ego|alter 1) (left panel), where we truncate both the ego and alter’s tweets after some fraction
of the ego’s lifespan. In general, we found that the cross-entropy estimator saturates within around 50% of
the ego’s lifespan. The right panel shows a histogram of the slopes of the convergence curves for all users
over the final 25% of the ego’s lifespan, as a fraction of the final value of H×(ego|alter 1). These slopes were
computed via linear regressions, and many of the slopes are close to zero.

S4 Extrapolating cross-entropy and predictability
We are limited by our data to a window of the top-15 most frequently contacted alters per ego. To address
a limit of entropy or predictability as more alters are added, we used a saturating function to extrapolate
beyond alter rank r = 15.

Specifically, we extrapolated the cross-entropy using the function

h(r) = h∞ +
β0

β1 + r
, (4)

with the goal of identifying the value of h∞ and, perhaps more realistically, to estimate h(rdunbar), where
rdunbar ≈ 150 [10]. Using Levenberg-Marquardt for nonlinear regression, we found best fit parameters of
(value ± 95% CI):

h∞ = 5.761978 ± 0.089699,
β0 = 9.455984 ± 1.358027,
β1 = 2.553345 ± 0.444479,

for the cross-entropy of the ego given the alters.
In Fig. S5 we show the mean cross-entropy as a function of alter rank and compare it with the results

of the fitted function. The fit is reasonable. Similarly, fits of the same functional form were applied to the
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Figure S4: Convergence of the cross-entropy estimator. (left) The estimator saturates well within the lifespan of the
ego’s tweets, generally within 50% of the lifespan. (right) The distributions of the slope (RoC: rate-of-change) over
the final 25% of the curves. The majority of egos have very flat RoCs at the end of their data windows. In the left plots
we show a randomly selection of egos, while the distributions on the right curve all dyads in our dataset.

predictability (ego given alter) curves:

Π(r) = Π∞ +
β0

β1 + r
, (5)

and here we found best fit parameters

Π∞ = 0.608219 ± 0.006914,
β0 = −0.734410 ± 0.100195,
β1 = 2.320039 ± 0.398486.

We also experimented with a second form of extrapolating function:

h(r) = h∞ + β0r−β1, Π(r) = Π∞ + β0r−β1 . (6)

This function, referred to as Function 2, also fits the data well (Fig. S6) but is a bit less conservative in
its extrapolation prediction when extrapolating for r → ∞. To further compare Function 2 and the original
function (Function 1), we plotted the residuals between the fits and the data in Fig. S6.

Taken together, we see that Function 1 (Eqs. (4) and (5)), themore conservative estimator, has consistently
smaller residuals than Function 2. Both functions’ residuals were statistically independent of the exogenous
variable r (p > 0.05). We concluded that Function 1 is a better choice since it has smaller residuals and is
more conservative than Function 2.
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Figure S5: Extrapolating cross-entropy and predictability. The fitted functions (Eqs. (4) and (5), solid lines) compared
with the original cross-entropy data (averaged for each alter rank). Note that the function was fitted to the original and
not averaged cross-entropy values.
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Figure S6: Extrapolations and residuals for the predictability functions (Function 1: Eq. (5); Function 2: Eq. (6)). (A)
Comparison of the measured cross-entropies (for the top-15 alters) with the extrapolation functions and mean residuals
between function fit and original data. (B) Same as panel A but for fits of the same form as Eqs. (5) and (6) to Π(r)
including the past of the ego along with the alters. Overall, Function 1 was slightly more conservative than Function
2, extrapolating to a slightly smaller value of Π, and had lower residuals.

S5 Supporting results
S5.1 Vocabulary sizes on social media
In Fig. S7 we present the distributions of the total number of words written per ego and the number of unique
words (the vocabulary size) per ego, for the users in our dataset. Egos had an average of ≈268003 total
numbers of words and ≈5200 numbers of unique words. The latter quantity, the vocabulary size, was used

3For context, this is about the typical length of a novella, defined by the Science Fiction and Fantasy Writers of America as
17500–39999 words [11].
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Figure S7: Distributions of Twitter ego vocabulary size: the total number of words written (left) and the vocabulary
size or number of unique words written (right).

Text Author ĥ (sample 1) [bits] ĥ (sample 2) [bits]

For Whom the Bell Tolls Ernest Hemingway 5.870953 5.910003
Gravity’s Rainbow Thomas Pynchon 5.881336 5.881336
The Fellowship of the Ring J.R.R. Tolkien 6.439215 6.340354
Ulysses James Joyce 7.067339 7.227677

Table S1: Entropy rates of some example texts. Samples 1 and 2 were the first and second 38,000 words of each text,
respectively (a bit longer than the typical Twitter user’s text stream). Hemingway is known for his simple writing style
while Joyce is famous for the opposite; this is well reflected in their respective entropy rates.

in Fano’s Inequality to compute the predictability.

S5.2 Information content on social media compared with formal written text
To contextualize the entropy rates we estimated for our dataset (most egos had entropies of 5.5 < h < 8
bits), we compared the entropy rates of formal text with the rates of Twitter users to better understand the
information content of social media writings4. First, we considered the entropies of some famous example
texts (Table S1). We considered writers who were famous for being very simple in style (Hemingway) and
very complex (Joyce) and found this was reflected in the entropy rates (5.87 bits for Hemingway compared
with 7.06 bits for Joyce). The higher entropies reflect that Joyce’s word choices are less regular and less
predictable than Hemingway’s. These formally written and edited texts are very different from social media
posts, and yet the range of entropies values we observed was compatible to some extent.

We also took the standard Brown corpus [12], a benchmark text set used in natural language processing
and computational linguistics research, as a large-scale baseline of formal text. The corpus consists of
approximately 1M words and covers 500 writing samples across 15 fiction and non-fiction categories. Each
category was broken into 10-thousand-word chunks and the entropies of these chunks were computed.
Individual chunks did not span multiple categories and if a chunk at the end of a category was less than 10
thousand words it was discarded to ensure all entropy estimates were computed using the same amount of
data. This gave n = 93 samples.

4The texts were processed by removing punctuation and casing.
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Figure S8: Entropy distributions for social and formal
written text corpora. We found that the distributions have
the same central tendency (Mann-Whitney U test: U =
39797, p > 0.1) but different dispersions (Fligner-Killeen
test on variances, χ2 = 15.580, p < 10−4 ) Brown corpus
was taken from NLTK v3.2.1 corpora [13].

We found that formal and social text have the same average value but that the variation across the Twitter
sample was significantly greater than across the formal text (Fig. S8).

S5.3 A censoring filter to determine long-range information in the egos and alters
To study the recency of information we applied the (cross-)entropy estimators to censored text, where we
removed the recent past of the text and asked how much if any information is lost. If most predictive
information is in the recent past, by removing it we should see a significant change in the cross-entropy,
although there should always be some loss in information, as the sequences being matched across are always
getting shorter.

Specifically, to compute the original cross-entropy (Eq. (2)) between two sequences A and B, we need
the cross-parsed match length at position i, Λi(A | B), giving us the shortest subsequence of words in A
beginning at position i not seen previously in B. This last part, the past of B, is based on the timestamps of
the words: we search all words in B written before the ith word wi in A: [w j ∈ B | t j(B) < ti(A)], where
ti(A) is the time when the ith word in A was posted (taking all words in a single tweet to be posted at the
time the tweet was posted).

The censoring filter simply truncates the past of B at each position i. Instead of searching all of the past
of B we instead search the past older than an amount ∆T : [w j ∈ B | t j(B) < ti(A) − ∆T]. By censoring
B as we sweep forward in the computation of the cross-entropy, we can estimate how much information is
recent versus long-term on average by the change in the cross-entropy rate as a function of ∆T . The same
calculation holds for the “self” entropy, simply by setting B = A.

We measured the loss of information in the main text out to 24 hours. Here we complement that
calculation with Fig. S9 which presents the information loss out to 1 week. We see in both curves that
long-range information is lost by the increasing trend. However, the trend is more shallow for the alters than
the ego: taking away more of the ego’s past removes more information about the ego than taking away the
less recent pasts of the alters.

S5.4 Posting frequency and predictability
Here we present in Figs. S10 and S11 the association between the posting frequencies of the egos and alters
with the predictability of the ego (Fig. S10: top row), predictability of the alter (Fig. S10: bottom row),
predictability of the ego given the alter (Fig. S11: top row), and the predictability of the alter given the ego
(Fig. S10: bottom row). We found that the predictabilities of the egos and alters are roughly independent of
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Figure S9: Alters provided less long-range information about the ego than the ego itself. This plot complements the
loss in predictability shown in the main text and extends ∆T beyond the 24-hour window to a one-week period.
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Figure S10: Self-predictabilities are approximately independent of activity frequency, with the exception of predictabil-
ity of the alter as a function of the alter’s activity frequency (lower right). This is primarily due to insufficient data:
alters who post very infrequently have low predictability, but the trend levels off for alters who post more than ≈1 time
per day.

their posting frequency, except for very infrequently posting alters (Fig. S11: bottom right), which is likely
a result of insufficient data.

The associations between posting frequency and the cross-predictability of the ego given the alter hold
even when considering all alters not just the rank-1 alter, as we did in the main text (Fig. S11: top row).
Likewise, the trends also hold (in reverse) when considering the predictability of the alter given the ego
(Fig. S11: bottom row).
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Figure S11: Association between cross-predictability and posting frequency holds for all alters. Here we repeated the
trends shown in the main text where we considered the rank-1 alter only, but now we included all alters as well. Due
to alters who post very frequently and very infrequently, we used a logarithmic scale on the right column.
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Figure S12: Less frequently contacted ties provide less predictive information

S5.5 Contact volumes and predictability
Here we present in Fig. S12 the predictability across social ties as a function of how often those social ties
contact one another. We ranked the ties of individuals in descending order. Working with ranks helps to
account for the variability in contact volumes and overall activity levels across users of social media. Across
ranks we found a significant decrease in predictive information, in both directions (predicting the ego given
the alter and predicting the alter given the ego).
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Figure S13: An “information homophily” between egos and alters. The entropies of egos and their alters are strongly
correlated, indicating a homophily effect. (A) The entropy rate h of egos compared with their rank-1 (most frequently
contacted) alter. The straight line y = x provides a guide for the eye. (B) The (Pearson) correlation coefficient R
between ego and alter entropies as a function of alter rank. Correlation decreases with rank. The dashed line indicates
the correlation coefficient over all ranks.

S5.6 Information homophily
We found a homophily effect between egos and alters in terms of their (self) information. The entropy rates
of the ego and alter on a given dyad were correlated (Fig. S13A). Figure S13A covers the correlation between
the ego and the rank-1 alter. In Fig. S13B we plot the correlation coefficient between ĥ(ego) and ĥ(alter) as
a function of alter rank. The correlation drops consistently over the first five or so alters, implying that the
homophily effect is a connected with contact volume. This information homophily is worth exploration in
further work.

On the other hand, the cross-entropies between the egos and alters are less well correlated, either with
the cross-entropy in the opposite direction, or with the entropies themselves. The correlations (for the rank-1
alters) are:

R
(
ĥ(ego), ĥ(alter)

)
= 0.478,

R
(
ĥ×(ego | alter), ĥ×(alter | ego)

)
= −0.122,

R
(
ĥ(ego), ĥ×(ego | alter)

)
= 0.240,

R
(
ĥ(ego), ĥ×(alter | ego)

)
= 0.227,

R
(
ĥ(alter), ĥ×(ego | alter)

)
= 0.247,

R
(
ĥ(alter), ĥ×(alter | ego)

)
= 0.300.

While significant in all cases, the correlations between the (self) entropies ĥ(ego) and ĥ(alter) are stronger
than between any of the cross-entropies, demonstrating that the effects captured by the cross-entropies over
a dyad are different than that captured by the entropies of the individuals in that dyad.

S5.7 Reciprocity and information flow
In the main text we reported on the relationship between contact volume and information flow, as measured
by the cross-entropy. A closely related quantity often employed in this context is the Kullback-Leibler
divergence, or KL-divergence, KL(ego ‖ alter) ≡ ĥ×(ego | alter) − ĥ(ego) [8]. In our data the correlation
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Figure S14: Reciprocated information flows are cap-
tured in both directions. (A) In the main text we re-
ported on the trend between contact volume and the
cross-entropy from the alter to the ego. We repeat
that figure here but with the KL-divergence. (B) In
comparison, if we consider the opposite divergence,
from the ego to the alter, we see a similar trend
but reversed: egos which more frequently mention
their alter give more predictive information (lower
divergence) than egos which mention their alter less
often.

between ĥ×(ego | alter) and KL(ego ‖ alter) is quite high (Table S2) and so they are effectively the same
measure.

We showed that alters whomore frequently mention their ego provide more predictive information (lower
cross-entropy/KL-divergence) than alters who less frequently mention their ego. Meanwhile, the converse
was not true: the ego can mention the alter more or less, and there was not an association with the predictive
information possessed by the alter about the ego.

Here we supplement that result by reversing the perspective—instead of asking about the predictive
information about the ego possessed by the alter we ask about the predictive information about the alter
possessed by the ego. We measure this with the reversed KL-divergence, K L(alter ‖ ego) ≡ ĥ×(alter |
ego) − ĥ(alter). With this reversal we should expect to also see a reversal in the association of contact
volume, and we found this to be the case (Fig. S14). In Fig. S14 we compared both KL-divergences and saw
that the trends approximately reverse, as expected.

S5.8 Interrelations between information-theoretic quantities
In Table S2 we present the Spearman rank correlation coefficients between the primary information-theoretic
quantities we computed, including the KL-divergence: KL(ego ‖ ater) ≡ ĥ×(ego | alter)− ĥ(ego). The cross-
entropy and KL-divergence are strongly correlated.
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