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Fig. 2. The GCC under link percolation. We observe that the fraction of nodes in the GCC, NGCC, of the network is robust under
link percolation meaning most links must be removed before the network fragments. This holds for all networks studied here.

The disparity backbone method focuses on statistically significant deviations in link weight. One
begins by defining a null model that determines the expected distribution of link weights around a node
with k links if those weights were distributed randomly. The method then compares the actual link
weights around the node to the null model. A significance level α ∈ (0, 1) is chosen and all links that
are statistically significant at α belong to the disparity backbone [22]. More explicitly, we examine for
each node, i and j, of an edge ij, if

αij = 1 − (k − 1)

� pij

0
(1 − x)k−2 dx = (1 − pij)

k−1 < α, (1.2)

where k is the degree of the node examined, pij = wij/
�

i wij is the weight of the edge normalized by
the strength of the node and α is a chosen significance level. In this case, αij is the p-value of the edge
which is then compared with the significance level desired. If αij < α for either node i or j, then the edge
ij is kept in the skeleton, otherwise the edge is left out [22].

1.3 Robustness methods

In perturbing the networks, we explore (i) node percolation, (ii) link percolation and (iii) link switching.
We define the percolation either of links or nodes by the number pperc which is the fraction of links
or nodes removed from the network. The classic result from percolation involves a phase transition in
the size of the giant connected component (GCC) for random networks. For most real networks, there
is no phase transition (while pperc < 1) and the size of the GCC is robust. We repeat this experiment
and examine how the GCC changes under link percolation for our datasets. In Fig. 2, we confirm the
previous results, which have shown that real networks are robust to link percolation.

There are a variety of methods of performing link rewiring and the process is somewhat subtle.
We use the method introduced by Karrer et al. [26], which involves rewiring in such a way that the
expectation value of the degree of each node is preserved. This is done by defining the probability of an
edge, eij, existing between nodes i and j according to their degrees:

eij = kikj

2L
, (1.3)
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Fig. 3. How site (or node) percolation changes the size of the (left) salience skeleton and the (right) disparity backbone. The linear
decrease in the size of the skeleton as pperc increases shows that the size of the skeleton is proportional to N , the number of nodes
in the network. (The noise in the Neural and Metabolic networks is likely due to the smaller size of those networks.) Meanwhile,
the disparity backbone decreases in size more quickly than the salience skeleton for pperc < 1

2 . The disparity backbone is more
sensitive to site percolation than the salience skeleton, especially for small amounts of percolation.

where ki is the degree of node i. To rewire, we go through each edge in the network and with some
probability ps we remove that edge and insert a new edge between nodes i and j, with i and j chosen
with probability eij/L. Otherwise, with probability 1 − ps, we leave that original edge in place. Karrer
et al. show that this rewiring scheme preserves the expected degree of each node in the network while
allowing us to tune the quantity of randomness with the parameter ps.

2. Results

We now study how our skeleton methods perform in the face of noisy and missing data by applying
them to perturbed versions of our networks and comparing their results to those obtained for the original
networks. For each value of pperc with a given skeleton and perturbation method, we average the results
over 100 trials and plot the mean and standard deviation. We note that rather than plotting |S| vs. pperc we
plot d|S|/dpperc vs. pperc in order to more closely reveal changes in the size of the skeleton. Numerically,
we calculate this quantity as the discrete derivative

d|S|
dpperc

= |S(pperc2
)| − |S(pperc2

)|
Δpperc

, (2.1)

where |S(pperc2
)| − |S(pperc2

)| represents the change in the size of the skeleton between two values
of pperc.

In the case of node percolation, we observe that the size or fraction of links in the skeleton, |S|,
is roughly proportional to N , the number of nodes in the network. This can be seen by the fact that
d|S|/dpperc ≈ −1. For the salience skeleton, this is true for all values of pperc while for the disparity
backbone the linear regime terminates earlier. This is shown in Fig. 3. This suggests that for the salience
skeleton it is mainly the path to the removed node that is affected by the percolation while paths to other
nodes may change slightly but contain about the same number of links as the original path. For the
disparity backbone, the decrease is faster than for the salience skeleton which shows that the size of
the disparity backbone is more sensitive to the number of nodes in the network.

In examining changes to the links in the network, we look at several other quantities. First the skele-
ton GCC, SGCC is intuitively defined as the fraction of the network that is connected when the network is
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Original Network Original Skeleton
|S|=3

Perturbed Network Perturbed Skeleton
|S|=3

Fig. 4. The skeleton of the original network is computed with |S| being defined as the number of links in the skeleton. After this,
the original network is perturbed either through percolation or link switching and the new skeleton is calculated. In the bottom
right network, the upper dotted link represents a link present in the original skeleton that was deleted in the new skeleton, so
LD = 1 for this example. In contrast, the bottom link represents a link present in the new skeleton but not the old skeleton, i.e. a
link added so LA = 1.

reduced to its skeleton. Secondly, we examine how many links are added to the skeleton, LA, after per-
turbation, and how many links are deleted from the skeleton, LD, after perturbation. An explanation of
the quantities LA and LD is shown graphically in Fig. 4. It is also important to note that the comparisons
for LA and LD are always made to the original skeleton.

For link percolation, we observe in Fig. 5 that for the salience skeleton both the size of the skeleton
and the size of the skeleton GCC (SGCC) are robust to change. However, the plots of LA and LD make
clear that the salience skeleton itself is undergoing significant changes. Essentially this suggests that
under link percolation the salience skeleton is able to find replacement pathways and those paths are
not considerably longer than the original paths. Links are being added and deleted, yet the skeleton is
simply rerouted and maintains its connectivity and size.

The one exception to this is the simulated Random network which has a very fragmented skeleton.
This behaviour corresponds to the fact that in the Random network there is a weaker preference for
shortest paths, i.e. the salience is not bimodal as shown in Fig. 1. However, after we remove a large
fraction of the links each node only has a couple of links and the shortest paths all go through the same
links.

To analyse this hypothesis and confirm that this is not an artefact of the specific salience cutoff
value chosen (0.5), we examine the SGCC of the Random network with different salience cutoff values.
In Fig. 6, we observe that the SGCC vs. pperc curve has the same shape until the salience cutoff is very low.
At that point the SGCC of the Random network is also robust to percolation and increasing the amount
of percolation never leads to a larger SGCC. The different behaviour of the Random network shows that
real networks have intrinsic properties which lead the SGCC to be robust under link percolation.

Meanwhile, in Fig. 7 we consider how link percolation affects the disparity backbone. The backbone
size decreases, yet its GCC remains robust. Comparing LA with LD shows that many links are deleted
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Fig. 5. Changes to the salience skeleton under link percolation. (top left) The size of the skeleton is robust to link percolation
since d|S|/dpperc ≈ 0 until pperc → 1. (bottom left) The GCC of the skeleton itself is also robust to link percolation (except in the
case of the random network). This is similar to the giant component of the network as a whole which was previously shown to be
robust to link percolation. (top right) Despite the robustness of the size of the skeleton, there are many new links that are added
to the skeleton as we increase pperc. (bottom right) Further, we observe that an equivalent number of links are removed from the
skeleton which leads to the lack of change in its size. This demonstrates that the skeleton performs a balancing act where removed
links are compensated with new links. New shortest paths are found and these new paths contain approximately the same number
of links as the old ones.

Fig. 6. The skeleton GCC, SGCC, of the Random network with different salience cutoffs. For salience cutoff values > 0.3, the
SGCC increases at pperc ≈ 0.8 and then begins decreasing at pperc ≈ 0.95. The unique shape of the salience distribution of the
Random network leads to different cutoffs being required for robustness.

and very few are added to compensate for those removed. We also observe that the backbone of the
Random network is less robust than the backbones of the real networks, as it was for the salience
skeleton.

Similarly, upon switching links using the method of Karrer et al. [26], we observe that S and SGCC

are robust for both the salience skeleton (Fig. 8) and the disparity backbone (Fig. 9). The significant
decrease and large variation in the Airport network’s salience skeleton giant component are likely due
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Fig. 7. Changes to the disparity backbone under link percolation. (top left) The size of the backbone is not robust to link percolation
which is in contrast to the salience skeleton. (bottom left) In agreement with the salience skeleton, the GCC of the disparity
backbone is also robust to link percolation, yet not quite to the same extent. (top right) Relatively few links are added to the
disparity backbone as links are deleted. Again, this is in contrast to the salience skeleton where enough links were added to
compensate for the links deleted from the skeleton. (bottom right) The rate at which links are deleted from the backbone is similar
to that for the salience skeleton. The main difference, however, is that this removal of links is not compensated for by the addition
of new links.

Fig. 8. Changes to the salience skeleton under link switching. (top left) The size of the skeleton is again robust. (bottom left)
The skeleton giant component of most of the networks is robust to link switching, yet the Airport network’s skeleton becomes
dramatically fragmented. This is likely due to a specific, unstable hierarchical (or hub-spoke) structure present in the Airport
network that dictates the paths for the salience skeleton. Such a hub-spoke structure may also account for the slight decrease in
the skeleton size for the neural network. (top and bottom right) Many links are added and removed from the skeleton, once again
in a way that maintains its size. Further, this reveals that while the size of the skeleton can be determined by the number of nodes
and the degree distribution, knowing which particular links will be present in the skeleton requires having the complete dataset.
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Fig. 9. Changes to the disparity backbone under link switching. (top left) As was true for the salience skeleton under link switching
and link percolation, we find the size of the disparity backbone to be robust under link switching. (bottom left) The GCC of the
disparity backbone is similarly robust. (top and bottom right) Again there are a significant number of links added and deleted yet
they once again balance to maintain the size of the skeleton.

to a specific, unstable hierarchical structure present in that network which, when altered, leads to frag-
mentation. Further work is needed to determine the exact nature of this structure. The Neural network
exhibits similar behaviour likely due to this. The low SGCC of the Random network occurs for the same
reason as seen under link percolation. Once again, we observe that similar to link percolation, despite
the robustness of the skeleton size and GCC, there are significant changes in the links that actually make
up the skeleton. Specifically, we see large changes in LA and LD just as we did with link percolation.

3. Conclusion

These results show that global summary statistics of skeletons, such as the size of the skeleton and
the size of the skeleton GCC, are robust to changes in the network structure. In contrast, the specific
details of the skeleton, such as the exact links it contains, will vary, potentially greatly, as the network is
perturbed. This suggests that while skeleton extraction methods are useful for understanding the global
properties of a network, caution should be applied when attempting to understand local properties based
on extraction methods.

We further showed that different methods of computing the skeleton respond quite differently under
perturbation in many cases. This suggests that caution must be applied before applying these results to
yet untested methods. Nonetheless, these results do suggest that basic global statistics can be extracted
regardless of the method. Lastly, the response of skeletons of real networks is significantly different
than the response of a random network. The methods used to compute network skeletons and backbones
exploit properties of real networks and these properties are not present in the simulated network. This
leads the skeleton of the Random network to respond quite differently under perturbation.

An obvious application of this work is to damage or change in transportation networks, where skele-
tons will be responsible for carrying the majority of the system’s traffic. This change often occurs in
the real-world scenario of transport reroutings and cancellations. The results here show that as these
changes occur the specific composition of the backbone or skeleton changes significantly. Nonetheless
global properties can still often be extracted from the skeleton.
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A second application is in protein–protein networks. These networks often contain noisy data and
are considered incomplete in the interactions they show [27,28]. Significant work to map these networks
entirely and obtain a full set of all the connections present is ongoing [29]. Despite the lack of the full
dataset, much analysis has already been done on the data that is available [30,31]. Our results suggests
that caution should be applied when looking at structural skeletons or backbones for many biological
datasets that contain noisy data because the errors will have a profound impact on the resulting skeleton
and backbone structures.

Lastly, these results have implications for temporal networks. In this case, it is not that our knowl-
edge is lacking about the network, but that the links change as time progresses [32]. Social networks
often display this sort of time dependence [33] and many neural networks also change through time
[34,35]. For these networks caution must be taken before applying methods of extracting skeletons or
backbones since their changing states will lead to different results.
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