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Abstract—Open source software projects usually acknowledge
contributions with text files, websites, and other idiosyncratic
methods. These data sources are hard to mine, which is why
contributorship is most frequently measured through changes to
repositories, such as commits, pushes, or patches. Recently, some
open source projects have taken to recording contributor actions
with standardized systems; this opens up a unique opportunity to
understand how community-generated notions of contributorship
map onto codebases as the measure of contribution. Here, we
characterize contributor acknowledgment models in open source
by analyzing thousands of projects that use a model called All
Contributors to acknowledge diverse contributions like outreach,
finance, infrastructure, and community management. We analyze
the life cycle of projects through this model’s lens and contrast its
representation of contributorship with the picture given by other
methods of acknowledgment, including GitHub’s top committers
indicator and contributions derived from actions taken on the
platform. We find that community-generated systems of contri-
bution acknowledgment make work like idea generation or bug
finding more visible, which generates a more extensive picture
of collaboration. Further, we find that models requiring explicit
attribution lead to more clearly defined boundaries around what
is and is not a contribution.

Index Terms—open source software, contributions, teams,
github

I. INTRODUCTION

Producing software is a multifaceted activity that requires

expertise beyond just writing code. Besides developers, tech

organizations employ workers in diverse roles such as testing,

product management, human resources, sales, and so forth

[1]. All of these roles contribute to the core product [2], if

indirectly, and are recognized as such.

Unlike industrial software, open source software (OSS) is

often developed under a non-traditional structure and, as a

result, is seen as the product of teams composed almost

exclusively of developers [3]. This picture is of course in-

complete at best, as is well-known by those involved with

OSS [4]. While young projects can thrive under the guidance

of lone developers or small unsupported teams, more mature

projects usually benefit from contributions to the project that

transcend code [4]. These non-code contributions may include,

for example: moderating communication channels associated

with the project or its issue tracker(s), fielding questions,

outreach, infrastructure, governance, funding acquisition, doc-

umentation, or even mere attention [4, 5]—these contributions

are all crucial determinants of a project’s continued success

[4, 6, 7].

The predominant incentive structure under which OSS op-

erates makes all non-code contributions practically invisible

to outsiders. Someone who is well acquainted with a com-

munity might be highly aware of who spent a lot of time

moderating a community, developing the project’s road map,

or managing the queue of issues. However, this information is

rarely recorded in a standardized way, particularly within soft-

ware repositories. Instead, OSS projects tend to acknowledge

contributions in ad-hoc ways, with mechanisms that include,

for example: flat credit files, acknowledgments appearing on a

project’s website, challenge coins handed out to contributing

community members [8], or even academic papers providing

citable artifacts and a snapshot of a project at a particular

moment in time. These models of acknowledgments are far

too diverse and variable to mine at scale. Further, they are not

always attached to the software project itself. As a result, when

mining software repositories, we are more or less reduced to

defining contributorship in terms of changes to the repositories,

whether it be at the levels of lines of codes, commits, pull or

merge requests, or patches.

Definitions of contributorship that emphasize code changes

are far from perfect. First, strictly focusing on the data mining

perspective, code as the measure of contribution tends to

provide an inaccurate picture of OSS projects. For example,

two definitions can be seemingly in agreement—say, having

committed code or opened a pull request—yet lead to different

conclusions about how OSS is made [9]. Commit data may

be erased or altered during code merges and revisions [10],

making decentralized version control logs unreliable for mea-

suring contributorships [11]. As we have already mentioned,
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contributorship, defined as the changing of code, does not

cover the complete spectrum of contributions [6, 12]. Second,

contributorship-as-code does not always map to a meaningful

notion of contribution. Not only do developers routinely con-

tribute code without feeling a sense of ownership or deeming

themselves contributor to a project [4, 13], but increasingly

large parts of code changes are implemented by bots that act

as users [14]. Finally, there are pronounced gender [15–17]

and geographical [18] differences in the way people contribute

to OSS—such that “commit as contribution” is not likely to

capture a representative cross-section of contributors.
Now, given that: (1) “commit as contribution” is a flawed

model, and (2) more representative acknowledgment models

are hard to mine due to a lack of standardization across

projects, one might wonder: Are we destined to mischarac-
terize contributorship to OSS projects in all our large-scale
analyses?

Fortunately, new tools [19], and models [1, 20] could help

us derive a more accurate picture of who makes OSS and

how. These tools and models aim to provide more systematic

and complete coverage of the types of contributions routinely

made to OSS. For example, tools like octohatrack [21]

and name-your-contributors [22] can generate lists

of all the users that have interacted with a GitHub project,

including those who opened issues, created pull requests, or

discussed issues. Models like the All Contributors (AC) project

aim to standardize credit files [20], and recommend that all the

contributors be credited together with the types of contribution

they have made, such as coding, code review, translation

work, or financial support. Other models, like gitmoji [23],

classify commits by the type of contribution they make to a

project. And many groups of researchers have proposed to

record the role of team members alongside codebases [1, 24],

or as metadata [6].
These tools and models have yet to permeate OSS, but

some of them have gained a small and dedicated following.

As a result, several projects already have detailed and parsable

contribution histories going back many years. To the best of

our knowledge, this is the first time where we have access

to a sizable, easily mineable, and detailed corpus of contrib-

utorship data in OSS, where contributorship is established by

the project members themselves instead of through external

analysis conventions.
In this paper, we characterize the use of these attribution

systems on GitHub. We organize our analysis around a series

of research questions. First, we ask:

• RQ1: How do models of contributorship acknowledgment
differ?

• RQ2: How much information is missed by focusing on
repository changes as the model of contribution?

Having understood the kind of information given by various

systems of contributions acknowledgment, we then focus on:

• RQ3: How do contribution to open source projects evolve
as they age?

• RQ4: Can we classify projects based on patterns of
contributions?

We discuss our answers to these questions in detail in

Sec. IV and V, but we highlight three key findings here:

1) Generosity. Models of contribution acknowledgment

that require manual attribution of credits recognize fewer

contributors than other models but that they can cover

work not captured by other methods (even by proxy).

2) Large blind spots. Across OSS, the majority of con-

tributors are acknowledged by simple methods like code

commits, but these methods may still omit the majority

of contributors to individual projects.

3) Typical life-cycle. As OSS projects grow in age and

popularity, contributors tend to spread more uniformly

across types of contributions. We do not see a similar

trend towards uniformity for tasks, in the sense that some

projects see an increased concentration towards a few

types of tasks (like code), while others grow in all areas

simultaneously.

Together, the answers to these research questions show that

we need to rethink how we define contributorship when mining

software repositories.

II. BACKGROUND

We distinguish four models of contributorship acknowledg-

ment.

First, we define platform-attributed contributors as the

contributors that a user browsing GitHub can easily and

reliably see. By default, these contributors are the top 100

users who have created the most commits in a repository,

which may (and often does) include bots. The list can be

re-ordered to show deletion or addition of code, but we

will stick to commits as it is a more agreed-upon notion—

if imperfect [9]—of contribution. This type of contribution

emphasizes code above all.

Second, we define contributors identified by automated
tools as those contributors that are not necessarily credited

for work on a project, but that can nonetheless be identified

programmatically for any project. In other words, data about

these contributors is already available as a by-product of

the development process, but it might not be highlighted by

default. A good example would be the contributors extracted

by octohatrack [21], which uses the GitHub Event Stream

(GES) to construct a list of all the users having interacted with

a repository. Other methods of this type would include joining

mailing lists or answers pulled from Q&A sites with repository

information.

Third, we define contributors identified with taxonomies
as contributors who are credited through formatted files fol-

lowing some prescribed “standard.” These taxonomies are

relatively recent additions to OSS, so there are few proposed

models, fewer implementations, and no ratified standards. In

fact, we are aware of only one project that has gained traction

thus far, the All Contributor (AC) model, whose traces can be

found in roughly 15 000 repositories at the time of writing.

Repositories following this model contain a JSON file in the

root folder (.all-contributorsrc). The file lists all the

users who have contributed to the project together with the
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Fig. 1. Detecting potential duplicates with repository names. We computed the
distance between repositories’ names with a modified Levenshtein Distance,
where 0 indicates a perfect match and 100 a maximally distanced pair
of names. We clustered the repositories with DBSCAN, treating pairs of
repositories with names at a distance of 8 or less as potential duplicates. This
yielded 28 clusters of more than one repository, accounting for 291 potential
duplicates. The threshold was chosen by inspecting the clusters to look for a
gap in the histogram of distances above.

types of contributions they have made. These contributions are

selected from a standardized list of 32 types of contributions

emphasizing artifacts (e.g., “created documentation”) and ac-
tivities (e.g., “does business development”) and are attributed

manually, oftentimes with the help of a bot to edit the file. We

note that other projects have attempted similar taxonomies; we

focus on AC because these projects either do not have a broad

notion of contributorship (e.g., gitmoji only classifies code

commits but does not credit non-code work) or have not yet

gained significant traction (e.g., The Software Credit Ontology

[25]).

Fourth and finally, we define contributors identified by
ad hoc methods as those contributors that can be identified

by parsing non-standardized data sources. This includes con-

tributors appearing on websites (e.g., a board of directors),

in text files where the contribution made is not specified, in

the documentation or the license files of projects, etc. These

sources of data require massive amounts of work to mine [26]

but can provide valuable information nonetheless.

III. METHODS

A. Data pipeline: lists of contributors

Due to the difficulty of mining ad hoc attribution data, we

focused our analysis on the first three types of contributorship

acknowledgment models and defined our sample as all the

projects that implemented the AC model.

To mine this sample, we first generated an initial list of

repositories by querying the GitHub API for repositories that

had a .all-contributorsrc file in the root folder. We

obtained 6 349 repositories in this way, down from 14 191

repository in which the file appeared in included folders. This

initial filter selected for intentional use of the AC model. We

then downloaded the .all-contributorsrc files of these

projects and discarded those that had incorrect formatting (625

invalid JSON files) or recorded no contributions (234 files).

This left us with a starting list of 5 490 repositories.

Many of these repositories were inactive copies of others

in our dataset [27], so we further filtered the list to keep only

the repository that was the “main development branch.” To

do this, we began by creating a list of potential duplicates by

finding repositories in our dataset that:

1) were the fork of another repository in our dataset, as

identified by the GitHub API;

2) or were identified as a duplicate by Spinnelis and

collaborators [28];

3) or fuzzily matched other repositories in our sample

by name (using a modified Levenshtein distance to

compute the similarity of names, followed by clustering

the names with DBSCAN [29], see Fig. 1);

4) or had inconsistent project ownership information in

the .all-contributorsrc file (project owners and

names must appear in the file and might not match the

actual repository from which we downloaded the file).

The first criterion allowed us to identify potential copies

created through the GitHub interface (18 pairs of repositories);

the second gave us a (slightly outdated) list of potential copies

by using indicators like the proximity of commit history (95

candidates); the third returned an up-to-date but incomplete

coverage of possible duplicate (291 candidates), and the fourth

gave a strong signal that the repository might have been copied

from another without updating the files (2 643 candidates).

Accounting for overlaps between these candidates, we were

able to identify 2 789 problematic repositories. Since none of

these four criteria could reliably tell us whether a repository

should remain in our dataset,1 we defaulted to removing these

repositories from our sample but manually retained 142 (e.g.,

the “true” repository in each cluster of names or all of them in

the match was spurious; repositories from the Spinnelis dataset

[28] that were valid, etc.). We were left with a final sample

of 2 855 projects after removing spurious repositories.

To complement this sample, we gathered data for the two

other models of contributorship acknowledgment discussed in

Sec. II. For each project in our final sample, we retrieved a

complete list of contributors with octohatrack, a Python

package that returns a list of all the users that interacted with

a repository together with the types of interaction they had

with that repository, as recorded in the GES. Further, we

directly queried the GitHub API to retrieve a list of the top 100

contributors as defined by GitHub. These two sources of data

credited many bots, which we removed to focus on human

contributors. Naming conventions made this task relatively

straightforward; we removed all users whose login ended in

[bot] and -bot, together with a small curated list of bots

whose names did not include these substrings (e.g., ‘renovate’

or ‘all-contributors’). This filter allowed us to identify 7 066

instances of bots contributing to a project in our sample. After

applying the filter, we ended up with a dataset comprising

142 599 projects–contributors pairs.

As a final step, we gathered meta-data about these repos-

itories, including the primary programming language of a

repository (as determined by GitHub), their current popularity

1For example, a fork of a template might be the relevant repository instead
of its parent; matching names do not necessarily imply matching content; a
fork might lead to two distinct but active projects; repositories have aliases.
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as measured by stars and forks, their velocity as quantified by

the number of commits, and their community score, defined

as the number of completed items on their community profile

(which includes items like having a README file or a pull

request template).

B. Data pipeline: contribution history
To gain further insights into the evolution of contributor-

ship, we cloned the 100 projects with the largest number of

contributors according to All Contributors and parsed their

history. This limited sample allowed us to focus on projects

with a long history and large teams (the sample size of 100

projects is arbitrary and was selected before analyzing the

data). For each project, we then replayed the evolution of

the .all-contributorsrc file starting when it was first

created, using the version control information, and computed

summary statistics of the contributions declared in each ver-

sion of the file. From these, we developed time series showing

the evolution of these statistics. We ignored versions of the file

that did not respect the AC format description (e.g., written

in invalid JSON or recording no contributor roles). Note that

we only used this restricted sample for RQ3 (results shown

in Fig. 7); all the other results were computed with the entire

sample of 2 855 projects.

C. Coarse-grained contributions
The types of contributions identified by AC and the GitHub

API are somewhat granular. For example, AC distinguishes

“plug-ins” and “code” as separate types of contributions, while

the GES (as mined by octohatrack) records events such as

‘PublicEvent’ (making a private repository public) that do not

occur often in the lifetime of projects. Such granular data is

not conducive to meaningful analysis of contributorship across
many repositories, due to repository-to-repository variations

in the way contributions are acknowledged, and the use of

the GitHub platform itself (say workflows centered around

issues and pull requests versus commits, periodic clones from

a remote mirror, etc. [30]). To reduce the effect of such

variations, we regrouped contributions into coarser categories,

see Table I and II. For AC, we obtained 5 coarse categories,

down from 32, and for the GES we obtained 5 (down from 13).

When we applied this coarse-graining to the contribution data,

we mapped non-standard categories to the best of our ability

(e.g., we treated “marketing” as a “business” contribution).

We ignored contributions that did not fit in the standard AC

model in any way (e.g., “discord” or “former-staff”). Unless

specified, all our results are computed with the coarsened

categories.

D. Reproducibility
Our analysis and code are available online4, and contains

all the information needed to reproduce our analysis, to the

extent made possible by best ethical practices.

2https://allcontributors.org/docs/en/emoji-key
3https://docs.github.com/developers/webhooks-and-events/

github-event-types
4https://doi.org/10.6084/m9.figshare.13966898.v1

TABLE I
COARSE-GRAINING OF THE ALL CONTRIBUTORS TAXONOMY

Coarse contribution AC contribution2

Artifacts a11y, code, data, doc, design, plugin

tool, translation, tests, userTesting

Education audio, blog, content, example

& Outreach eventOrganizing, mentoring, question

talk, tutorial, video

Lead business, financial, fundingFinding

ideas, projectManagement, research

Maintenance bugs, maintenance, review

Support infra, platform, security

TABLE II
COARSE-GRAINING OF GITHUB EVENTS STREAM

Coarse contribution Event3

Code PushEvent, PullRequestEvent

Code Review CommitCommentEvent

PullRequestReviewEvent

PullRequestReviewCommentEvent

Issues IssueCommentEvent, IssuesEvent

Maintenance CreateEvent, DeleteEvent, MemberEvent

PublicEvent, ReleaseEvent

Wiki/Docs GollumEvent

IV. RESULTS

We organize our results according to our four research

questions.

A. RQ.1: How do models of contributorship acknowledgment
differ?

For our first research question, we want to understand

the kind of work each model recognizes. Are some models

more generous? Are there contributions that are more easily

recognized by all models or conversely invisible to all of them?

To start answering these questions, it is perhaps best to

first visualize the distribution of the number of contributors

to a project as captured by the different models (Fig. 2). This

simple exercise already reveals critical differences between

models. For instance, GitHub events (GES) capture tasks such

as issues and comments, as well as all changes to the codebase,

which means a greater coverage in types of contributors for

each project, resulting in some projects claiming thousands

of contributors. In contrast, the Github user interface limits

the number of displayed contributors to 100 and only uses

commits to measure contributions, giving the appearance of

far fewer contributors per project. This display distribution is

saturated—indicating that several projects would acknowledge

more contributors if the user interface were not capped. Given

these differences, it may be surprising that we find that the

distribution of the number of contributors per project has a

similar shape under the GitHub top committers and AC model,

although the latter has a longer tail.
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Fig. 2. Number of unique contributors per project as captured by (top to
bottom) All Contributors (AC), the Github Event Stream (GES), and the
GitHub top committers. The insets show the same histograms on a vertical
logarithmic scale.

Next, examining individuals projects instead of distributions

over all projects, we find that AC is used to acknowledge more

contributors than what the platform highlights in the “Con-

tributors” panel, in 29.5% of the cases. In 8.1% of cases, the

AC model also identifies more contributors than what can be

derived from GitHub events. Hence, while the absolute number

of contributors recognized with AC can be quite large, on

average, it is the least generous model of the three, in the sense

that it highlights fewer contributors than GitHub events or top

committers. Some projects in our sample (6.8%) have more top

committers than contributors identified with the GES because

hard forks conserve commit information that GES cannot

acknowledge. For example, many djangocon projects are

hard forks of djangocon/2017.djangocon.us, so the

committers to that project appear in all the projects but not in

the GES.

Figure 3 quantifies the diversity of contribution types ac-

knowledged in AC and the GES, the two models that identify

types of contributions. On average, most AC contributors

perform about one type of task, while the GES identifies two

types of contributions on average. These quantities are tightly

peaked around the mean for AC, and less so for GES.

We then look for significant associations between the var-

ious types of tasks contributors complete. We do this by

computing the mutual information [31] of these contributions

within each project. The mutual information of contributions

Fig. 3. Distribution of the average number of contribution types per
contributor, for All Contributors (left) and the GitHub Event Stream (right).
The insets show the distributions of standard deviations of contribution types
per contributor (across projects).

of types X and Y (say, “artifact” contributions acknowledged

with AC and “code review’ contributions acknowledged with

the GES) can be calculated from their contingency table. This

table records the number n00 of users that have done neither

contributions, the number n11 of users that have done both,

and the number n01 and n10 that have done either of them.

We then obtain empirical frequencies pij by normalizing these

counts by the total number of users
∑

i,j nij and compute the

mutual information as

MI(X,Y ) =
∑

ij

pij log
pij
uivj

(1)

where ui =
∑

j pij and vj =
∑

i pij are the marginal

distributions of pij . A large value of the MI(X,Y ) signifies

that contributions of types X and Y are strongly associated.

Conversely, a value of 0 tells us that these types of con-

tributions are independent. Finally, the self-information (or

mutual information of a variable with itself) equals the entropy,

a measure of heterogeneity that is the smallest when all

contributors contribute to that type (e.g., when all contributors

code).

Our results appear in Fig. 4, where we show the matrix

of mutual information across contributions, averaged over

all the repositories in our corpus. The darker block-diagonal

structure in the bottom right of the heatmap shows that all the

GitHub contributions are strongly associated with one another,

with the exception of contributions to a wiki (which are not

often represented in our sample). For example, GitHub coding

contributions are associated with top committers—knowing

that a user is top committer tells us that they will appear in

coding events in the GES—and also artifact contributions as

acknowledged by AC. Of note, we observe that most types
of AC contributions are independent of the others, which

means that models which explicitly identify categories do a

good job of capturing types of contributions unrelated to code.

Strongly associated contribution types would imply that some

are superfluous.
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Fig. 4. Mutual information of contribution types averaged across all
repositories in our sample. A large value signifies that two types of con-
tributions X and Y are strongly associated. The diagonal shows the entropy
of contribution types and is the largest when exactly half of the contributors
have a contribution of that type.

B. RQ.2: How much information is missed by focusing on
repository changes as the model of contribution?

Since different models of contributorship differ in what they

acknowledge (Fig. 4) and in terms of the total number of

credited contributors (Figs. 2-3), we now ask a more specific

question: How much information is missed by operating under

a “commit as contribution” paradigm? Here, information can

mean contributors beyond code (i.e., how many contributors

per project have no code contributions?) but also code contri-

butions missed because of the platform’s structure (i.e., code

contribution from one user committed by a separate user).

In Fig. 5 (left panel), we present the histogram of projects

showing the fraction of contributors acknowledged in the All

Contributors file that have no code contributions according

to the GES and GitHub interface. We find that in a majority

of our collected repositories, all users that appear in the AC

file have at least one contribution in the form of a commit

or pull request. However, we also find that for projects with

contributors beyond code (contributors that do not have a

commit or pull request), there is no characteristic fraction

of contributors without code contributions: the distribution is

relatively flat across repositories.

In the right panel of Fig. 5, we show a complementary

histogram, namely the distribution of the fraction of users

with a coding contribution but do not appear in the AC file.

Of note, these results show that coding contributors are not

a simple subset of the broader definition of contributorship

considered by All Contributors. The AC model calls for an

explicit attribution of credit by a project’s leadership. Our

results show that several contributors, in the strict sense that

they provided code, are not acknowledged with the AC model.

Figure 6 investigates the nature of the AC contributions and

highlights the work of contributors that are not acknowledged

on the GitHub platform in any way (i.e., they do not appear

Fig. 5. Holes in credit attribution. (left) Distribution of fraction of contributors
acknowledged with All Contributors (AC) that are not top committers nor have
any code contribution according to the GitHub Event Stream. (right) Fraction
of contributors per project that have a coding contribution (defined as being a
top committer or having a code contribution as per the GitHub Event Stream)
but do not appear in the All Contributors file. The histograms are complements
of one another.

Fig. 6. Twenty most frequent types of AC contributions. In black, we highlight
contributions made by contributors who are not acknowledged in any of the
GitHub data sources (GES and top committers).

in the GES and they are not top committers). As expected,

many tasks with little to do with the codebase show up in the

list, such as idea generation or testing. Somewhat surprisingly,

we find at the top of the list code-related contributions such

as code, documentation, or bug-finding. These results can be

explained by a mixture of mechanisms: some organizations

maintain AC files that are not in sync with where the work

occurs; the workflow of some OSS projects involves mirroring

code on GitHub, which masks code-contribution events; and

our filters could miss duplicates created by pushing a clone

or near-copies of a repository without altering the AC file. In
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more uniform

more heterogeneous

Fig. 7. Evolution in the All Contributors file of the largest 100 projects of (top
left) the number of contributors, (top right) the number of tasks, (bottom
left) the contributor entropy and (bottom right) the task entropy. Recall that
a low contributor entropy means that a few users carry out most of tasks types
and that low task entropy means that a few tasks dominate the contributions.
Conversely, high entropy implies a more uniform distribution of contributions
over users or tasks.

all these cases, developers might be acknowledged for coding

work not captured by the platform.

For our current research question, these results stress that,

by focusing on direct code contributions like commits and pull

requests, most of the contributions missed could be indirect

code contributions such as development occurring outside of

our sample (i.e., outside of GitHub).

C. RQ 3: How do contribution to open source projects evolve
as they age?

Shifting our focus away from how acknowledgment models

differ, we can also use the contributorship data to understand

more about how OSS is made. To this end, we first investigate

the role of time and how it affects the makeup of contributors

to a project. We first look at the growth of projects over time

in the top row of Fig. 7 (here defined solely through their All

Contributors file), where time is defined as the number of days

since the creation of the AC file. find periods where projects

are relatively static or undergoing linear growth and periods of

faster (e.g., exponential) growth. Hence, a given project’s state

of contributors is not in equilibrium but should be studied as

a dynamical process.

To understand how the distribution of contributions evolves

over time, we then look at a project’s trajectory with what we

call the task entropy and contributor entropy of the project.

We define these entropies as:

Hcontrib. = −
∑

i

ki
m

log
ki
m
, Htask = −

∑

k

qj
m

log
qj
m
,

(2)

where ki is the number of contribution types (or, tasks)

made by person i, where qj is the number of people doing

contributions of type j, and where m =
∑

i ki =
∑

j qj is a

normalization ensuring that {ki/m}i and {qj/m}j are proba-

bility distributions. The contributor entropy becomes larger the

more uniformly distributed tasks are between all contributors.

Likewise, the task entropy is the largest when contributors

are distributed uniformly between all tasks (i.e., contribution

types), see Fig. 8 (right) for a schematic illustration of extreme

cases. The entropy [31] has been used before to quantify the

diversity of contributors to files [32, 33], effectively asking

which whether a file is the work of many developers or

only a few; here we use it to ask questions about tasks and

contributors.
In the bottom row of Fig. 7, we show the separate evolution

of task and contributor entropies over time for the 100 projects

with the most AC contributors. The time series of contributors

are consistent with what we expect from projects whose num-

ber of contributors all grow over time: Contributor entropy also

grows over time, resulting in an increasingly homogeneous

distribution of tasks over contributors. This change could be

due to increased project complexity or simply a higher drive

to recognize the teams’ diverse work as projects mature.
Surprisingly, we find no such general trend in the time

series of task entropies. For many projects, the distribution

of contributors over tasks seems to stabilize at drastically

different values for different projects or slowly become more

heterogeneous over time. Some time-series also feature sudden

drastic jumps, see all-contributors-cli, likely related

to internal decisions to credit new types of contributions as

shown in Fig. 9.

D. RQ.4: Can we classify projects based on patterns of
contributions?

As a final research question, we ask whether patterns of

contributions can help us find archetypal projects. To this

end, we use the entropies introduced for RQ3 and define

a space of projects, where each project is represented by a

contributor entropy and task entropy that is computed with the

most up-to-date contributorship information available. For this

question, we again use the entire sample of 2855 projects. We

show the resulting space in Fig. 8; the columns highlight the

relation between the entropies and various covariates, namely

the community score, the number of stars, forks, and commits.

The top row shows the space obtained when we use AC

contributions to compute the entropies, and the bottom row

shows the same space but using GitHub events. Both models

of contribution acknowledgment span a similar range of task

entropies, but the GES leads to a broader range of contributor

entropies.
One can think of the corners of these spaces as correspond-

ing to different archetypal projects. High contributor entropy
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Fig. 8. We measure the heterogeneity of contributions to different projects (unique markers in each plot) by calculating the entropy of tasks (contribution
types) per contributor and contributor per task (Eq. 2). A high contributor entropy suggests a uniform distribution of task types over contributors, and a
high task entropy suggests a uniform distribution of task types over contributions. Conversely, high entropies suggest a concentration of efforts upon a few
contributors/tasks. (top row) Map of all projects in this entropy space using contributions characterized by All Contributors; (bottom row) equivalent map
using the GitHub Event Stream. The four columns look at correlation in this space with different repositories: (left to right columns) GitHub’s community
score, stars, forks, and commits. Examples of projects with different combinations of high/low task/contributor entropies are shown to the side, with squares
representing contribution types and circles representing contributors.

and high task entropy indicate that every contributor does

every type of contribution—an unlikely situation unless the

project is very small. Low contributor entropy and low task

entropy mean that few or one contributor does all the types of

contributions and that there are not many types of contributions

being made. Again this tends not to happen unless a project

comprises only code and is developed by a very small team.

Mixed situations are more typical, and, indeed, projects tend

to organize along an anti-correlated diagonal axis in Fig. 8.

Low contributor entropy and high task entropy (top-left corner)

occur when a few contributors do all types of tasks (a

pattern of contributions we have seen in young projects, see

Fig. 7). Conversely, high contributor entropy and low task

entropy (bottom-right corner) correspond to a situation where

all the contributors have similar contribution patterns, mainly

concentrated around a few tasks. It seems to be the purview

of more established projects, where most contributors create

code (which is, after all, the primary product of most OSS

projects).

Turning to the connection between entropies and various

covariates, we find that a high contributor entropy is strongly

associated with higher popularity (measured with stars and

forks) and modestly associated with a more extended project

history (measured in commits). For instance, the Pearson’s

correlation coefficient of the GES contributor entropy with

the logarithm of the number of forks (plus one) is r = 0.87,

while the r = 0.56 for the logarithm of the length of the

project history. The results are consistent with Fig. 7, as old

and, on average, more popular projects tend to have higher

contributor entropy. However, we also find no strong relation

between entropies and community scores (r ∈ [0.1, 0.23] for

the correlation of the entropies values with the community

scores). This lack of correlation is somewhat surprising, as we

might have expected compliance with the community profile

to be a strong indicator of other prosocial behavior, like having

a well-balanced (i.e., high entropy) contributor roster.

V. DISCUSSION

We found in many ways that contributions listed by a

project’s All Contributors (AC) file were less “generous”

than contributions extracted from the project’s GitHub Event

Stream (GES), with fewer types of contributions per user

and over 90% of projects containing fewer acknowledged

contributors in their AC file than those appearing in the GES.

At the same time, we have found, perhaps unsurprisingly, that

AC acknowledges work that could not have been recognized

at all otherwise. So, why is AC less generous even though

it can acknowledge more contributions in theory? One reason

may be a higher threshold for inclusion: a project may be

(implicitly or explicitly) using their AC file to denote what

they consider to be substantive contributions. Another reason

might be that the manual labor involved in acknowledging

and vetting contributors acts as a barrier to entry, limiting the

number of recognized contributors.
While OSS roles are not limited to software development,

and AC’s contributor taxonomy specifically accounts for non-

code contributions, we still observe that code contribution is

the dominant contribution type: most users listed in a project’s

AC make a code contribution. Given that OSS teams tend

to be small [34] and only larger teams tend to utilize and

benefit from non-code support [4], maintaining AC files may

be helpful for only those larger teams. Similarly, most teams

feature a small core of developers who perform most code

work [35], and AC acknowledgments may be less likely to

reach contributors beyond that core.
All of these observations suggest that the AC model operates

on a stricter yet fuzzier model of contributorship; what is

and what is not a “significant” contribution is largely up to

a project’s team, and the barrier to entry seems large.
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The differences between models of contributorship acknowl-

edgment have implications for diversity, equity, and inclusion

(DEI) in OSS [36, 37]. For example, women enter the OSS

community later and for different reasons than men and tend

to participate less if they have children. Women are also more

likely than men to perform non-coding tasks, and so efforts

such as AC are crucial to more equitably acknowledging

efforts and helping projects be more inclusive. At the same

time, the stricter definition of contributorship implemented

in models like AC might also be at odds with DEI efforts.

Studying, for example, gender effects within these data is thus

an essential avenue for future research.

Our findings also have implications for the validity of

analyzes of software repositories. First, our results show that

when one mines software repositories to conduct a sociological

analysis of teams, data sources like the GES will likely include

contributors that do not meet the implicit standards team

members hold each other to. At the same time, the GES may

miss key contributors who do not work on code because GES

contributions only correlate with artifacts (Fig. 4). The GES

is thus likely to simultaneously over- and under-estimate the

breadth of contributions made to a project. Second, our results

also show taxonomies should not be used if the goal is to

determine the projects’ footprint, defined as the total number

of developers having interacted with projects (as GES does).

And while we have found disparities between models, we

also found surprising similarities. Of note, we found that

the two models of credit attributions paint a similar picture

of a project’s lifespan: contributors distribute homogeneously

across contributions types as project mature—whether we

measure maturity in terms of popularity (Fig. 8) or time

(Fig. 7).

The All Contributors project paves the way towards a

standardized acknowledgment of contribution in OSS [6]. With

broader identification and attribution of the work critical to

releasing and maintaining software, there is hope for both

more effective and more inclusive OSS communities. By

standardizing contributorship, researchers can begin to mea-

sure aspects of OSS that go beyond the code itself. Yet a

standard taxonomy is not enough, even if adopted broadly: it

must also be adopted consistently. If communities define and

apply criteria for using the taxonomy differently, then cross-

comparison becomes challenging (see also Sec. VI). This was

already an issue for the modest corpus we have analyzed, as

we have encountered several mutations to the AC model while

gathering our dataset.

VI. THREATS TO VALIDITY

Perhaps the largest threat to the validity of our results stem

from the fact that we have used a sample of convenience—the

few thousands of projects that implement the All Contributors

model of contributorship acknowledgement on GitHub. This

has several implications. First, our sample is biased towards

projects willing to go out of their way to acknowledge contrib-

utors using a method that is not widely used, which is a partic-

ularly prosocial behaviour. Hence, the group of acknowledged

Fig. 9. Primary programming language of the repositories in our sample (top
10) on a logarithmic scale. We note that a large fraction of the repositories
implementing the AC model are written in JavaScript (36.6%) or TypeScript
(22.7%), a superset of JavaScript). A few Python projects (189) have also
implemented the AC model.

the contributors might be particularly broad relative to a typical

OSS project. This effect might be compounded by the fact that

the All Contributors model is most popular in the JavaScript

community (see Fig. 9), which is known for its particularly

collaborative practices, and for its focus on developers rather

than projects [4]. Second, the code that appears on GitHub is

itself a skewed sample of OSS software so our results might

not generalize to other services or populations [18].

We have also assumed that logins correspond to a sin-

gle user. This is a relatively safe assumption since we use

platform-level data (i.e., GitHub logins) to identify users rather

than git logs [38, 39] or mailing lists [40] where aliases

are poorly resolved. Beyond aliases we have assumed that

login information is consistent across data sources (AC and

GES). This assumption is unlikely to lead to major issues,

since .all-contributorsrc files are typically managed

by a bot via comments on pull requests and issues, at the

platform level, where users are again identified by their GitHub

login. Nonetheless, in some instances All Contributors files are

handled manually, and we have encountered 7 instances of

names provided without logins (for which we assumed there

was no matching code contribution or interactions with the

repository).

On a technical note, we have filtered bots using simple

pattern matched on names combined with a hand-crafted list

of bots. Nonetheless, the filter might be non-exhaustive, in

which case some our results could conflate the activity of

bots with that of human developers. More exhaustive filtration

techniques could reduce this threat in the future [41].

Another threat to validity is the fact that repositories are

not projects [30]. We have gone to great length to mitigate

this threat by filtering repositories heavily as to keep only the

ones where development is or was active. However, there are

still cases where our filters cannot do much, especially when

organizations control several repositories. It may be the case

that organizations concentrate all their contributors within a

single All Contributors file but distribute work across several

repositories (or vice-versa). Further, non-code contributions
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may be hard to assign—should “finance” appear in all the

repositories of an organization or only the main one? The

lack of clear signaling around these norms mean that usage

may vary in practice and implies that OSS needs further

standardization for how contributions are acknowledged.

Finally, while our sampling strategy and mining goals allow

us to avoid most of the perils usually involved with mining

GitHub (like the lack of activity for most repositories, that

few projects use pull requests, or that some repositories are

private or non-software projects) [27], we may be affected by

some issues specific to git [11]. For instance, the history of

git projects is revisionist, which implies that the GES might

not give us a fully accurate picture of development [11].

VII. ADDITIONAL RELATED WORK

Early studies of contributions in software development had

little to do with credit categorization and attribution, instead

primarily investigating the nature of software development

itself. For example, Glass et al. [42] aimed to quantify to

what extent contributions involve “human ingenuity” (or “in-

tellectual tasks”) as opposed to “routine procedures” (or “cler-

ical tasks”). To do so, they rely on small-scale experiments

(e.g. six graduate students in a software development course)

and on a complicated taxonomy developed by Henderson &

Cooprider [43] composed of 61 so-called intellectual tasks and

22 clerical tasks.

More recent studies tend to leverage large-scale data avail-

able on OSS. These efforts are often focused on committers,

whose contributions are directly available in repositories or

on specific communities with available lists of members (e.g.,

the Apache Software Foundation [44]). Other efforts focus

on different types of contributions, such as Hamasaki et
al. [45] who present case studies and datasets on code review.

While most of their work evaluates the quality of reviews

and individual performance, they also analyze the evolution

of different roles in OSS development as categorized by the

Android Open Source Project documentation5.

These large-scale datasets have been used to measure or

categorize significant contributions to software development.

To this end, there exist a series of models developed to use

software repository (quantified through lines of codes metrics)

as well as mailing list or wikis (quantified through threads or

pages) to estimate effort [46] or measure contribution [12].

Interestingly, unlike in our current paper, Gousios et al. [12]

also includes the possibility of negative contributions such as a

line of code that introduces a bug, commits without comments,

or reporting invalid bugs.

With these large datasets and new analysis tools comes the

need to better acknowledge and quantify contributions. In that

spirit, Capiluppi et al. [47] proposes to quantitatively credit

developers through h-index like metrics. These proposals do

not consider the different types of contributions or relative

differences in the scale of contributions. Therefore, studies

like Lima et al. [48] have exposed the need for more refined

5https://source.android.com/setup/start/roles

models of contributions that embrace contributions of different

natures as well as task distributions within projects.

Notably, Alliez et al. [6] recently reported on their experi-

ence on crediting software within Inria, the French institute

for digital sciences. They recommend rich taxonomies for

software contributions with qualitative scales to enhance the

visibility and impact of research teams. Ramin et al. [1] also

recognized the need for contributorship taxonomies that go

beyond code and propose to use scrum roles. Milewicz and

collaborators also carried a survey-based analysis contributor-

ship in scientific software (on 72 developers) to empirically

informed better models of the development process [26].

In the academic context, taxonomies such as the CRediT

framework [49–52] have allowed important analyses of labor

divisions [53]. Similar work could be enabled in software

development through new contributorship taxonomies.

VIII. CONCLUSION

That software development is driven by elements beyond

code is well accepted, with the social, financial, and educa-

tional dimensions of OSS having attracted particular attention.

Models of contributorship acknowledgment embrace this cen-

tral aspect of OSS, and aim to give an objective and holistic

acknowledgment of contribution across all these dimensions.

Our results characterize the main model of contributorship

acknowledgment by examining thousands of projects adopting

the All Contributors model and comparing these with default

platform statistics. We find that while community-generated

attributions make non-code related work more visible, it also

tends to be less generous and can miss several contributors to a

project. We hypothesized that it could be due to contributions

deemed less significant by the community, but which still

should not be invisible if we are to capture a complete picture

of OSS projects. Future qualitative work will help shed light

on such trade-offs and on why projects are compelled to

implement models like All Contributors.

Our findings stress the importance of defining new contribu-

tion taxonomies, or refining existing ones, through workshops

to accommodate diverse projects in OSS. This collective

development is critical for both large-scale adoptions of taxon-

omy and its uniform implementation. Clearer, more complete

taxonomies can help us better observe OSS projects, both by

highlighting meaningful contributions and by bringing often

invisible work to light.
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