James Bagrow, james.bagrow@uvm.edu, http://bagrow.com
Here's a mapping example that:
import csv
import numpy as np
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
# load earthquake epicenters:
# http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/1.0_week.csv
lats, lons = [], []
with open('earthquake_data.csv') as f:
reader = csv.reader(f)
next(reader) # Ignore the header row.
for row in reader:
lat = float(row[1])
lon = float(row[2])
# filter lat,lons to (approximate) map view:
if -130 <= lon <= -100 and 25 <= lat <= 55:
lats.append( lat )
lons.append( lon )
# Use orthographic projection centered on California with corners
# defined by number of meters from center position:
m = Basemap(projection='ortho',lon_0=-119,lat_0=37,resolution='l',\
llcrnrx=-1000*1000,llcrnry=-1000*1000,
urcrnrx=+1150*1000,urcrnry=+1700*1000)
m.drawcoastlines()
m.drawcountries()
m.drawstates()
# ######################################################################
# bin the epicenters (adapted from
# http://stackoverflow.com/questions/11507575/basemap-and-density-plots)
# compute appropriate bins to chop up the data:
db = 1 # bin padding
lon_bins = np.linspace(min(lons)-db, max(lons)+db, 10+1) # 10 bins
lat_bins = np.linspace(min(lats)-db, max(lats)+db, 13+1) # 13 bins
density, _, _ = np.histogram2d(lats, lons, [lat_bins, lon_bins])
# Turn the lon/lat of the bins into 2 dimensional arrays ready
# for conversion into projected coordinates
lon_bins_2d, lat_bins_2d = np.meshgrid(lon_bins, lat_bins)
# convert the bin mesh to map coordinates:
xs, ys = m(lon_bins_2d, lat_bins_2d) # will be plotted using pcolormesh
# ######################################################################
# define custom colormap, white -> nicered, #E6072A = RGB(0.9,0.03,0.16)
cdict = {'red': ( (0.0, 1.0, 1.0),
(1.0, 0.9, 1.0) ),
'green':( (0.0, 1.0, 1.0),
(1.0, 0.03, 0.0) ),
'blue': ( (0.0, 1.0, 1.0),
(1.0, 0.16, 0.0) ) }
custom_map = LinearSegmentedColormap('custom_map', cdict)
plt.register_cmap(cmap=custom_map)
# add histogram squares and a corresponding colorbar to the map:
plt.pcolormesh(xs, ys, density, cmap="custom_map")
cbar = plt.colorbar(orientation='horizontal', shrink=0.625, aspect=20, fraction=0.2,pad=0.02)
cbar.set_label('Number of earthquakes',size=18)
#plt.clim([0,100])
# translucent blue scatter plot of epicenters above histogram:
x,y = m(lons, lats)
m.plot(x, y, 'o', markersize=5,zorder=6, markerfacecolor='#424FA4',markeredgecolor="none", alpha=0.33)
# http://matplotlib.org/basemap/api/basemap_api.html#mpl_toolkits.basemap.Basemap.drawmapscale
m.drawmapscale(-119-6, 37-7.2, -119-6, 37-7.2, 500, barstyle='fancy', yoffset=20000)
# make image bigger:
plt.gcf().set_size_inches(15,15)
plt.show()
Could be better still, but not bad.
Finally, here's a nice hexbin map taken from the Basemap example set:
# example showing how to plot scattered data with hexbin.
from numpy.random import uniform
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.basemap import Basemap
# create north polar stereographic basemap
m = Basemap(lon_0=270, boundinglat=20, projection='npstere',round=True)
#m = Basemap(lon_0=-105,lat_0=40,projection='ortho')
# number of points, bins to plot.
npts = 50000
bins = 30
# generate random points on a sphere,
# so that every small area on the sphere is expected
# to have the same number of points.
# http://mathworld.wolfram.com/SpherePointPicking.html
u = uniform(0.,1.,size=npts)
v = uniform(0.,1.,size=npts)
lons = 360.*u
lats = (180./np.pi)*np.arccos(2*v-1) - 90.
# toss points outside of map region.
lats = np.compress(lats > 20, lats)
lons = np.compress(lats > 20, lons)
# convert to map projection coordinates.
x1, y1 = m(lons, lats)
# remove points outside projection limb.
x = np.compress(np.logical_or(x1 < 1.e20,y1 < 1.e20), x1)
y = np.compress(np.logical_or(x1 < 1.e20,y1 < 1.e20), y1)
# function to plot at those points.
xscaled = 4.*(x-0.5*(m.xmax-m.xmin))/m.xmax
yscaled = 4.*(y-0.5*(m.ymax-m.ymin))/m.ymax
z = xscaled*np.exp(-xscaled**2-yscaled**2)
# make plot using hexbin
fig = plt.figure(figsize=(12,5))
ax = fig.add_subplot(122)
CS = m.hexbin(x,y,C=z,gridsize=bins,cmap=plt.cm.jet)
# draw coastlines, lat/lon lines.
m.drawcoastlines()
m.drawparallels(np.arange(0,81,20))
m.drawmeridians(np.arange(-180,181,60))
m.colorbar(location="bottom",label="Z") # draw colorbar
plt.title('hexbin', fontsize=20)
# use histogram2d instead of hexbin.
ax = fig.add_subplot(121)
# remove points outside projection limb.
bincount, xedges, yedges = np.histogram2d(x, y, bins=bins)
mask = bincount == 0
# reset zero values to one to avoid divide-by-zero
bincount = np.where(bincount == 0, 1, bincount)
H, xedges, yedges = np.histogram2d(x, y, bins=bins, weights=z)
H = np.ma.masked_where(mask, H/bincount)
# set color of masked values to axes background (hexbin does this by default)
palette = plt.cm.jet
palette.set_bad(ax.get_axis_bgcolor(), 1.0)
CS = m.pcolormesh(xedges,yedges,H.T,shading='flat',cmap=palette)
# draw coastlines, lat/lon lines.
m.drawcoastlines()
m.drawparallels(np.arange(0,81,20))
m.drawmeridians(np.arange(-180,181,60))
m.colorbar(location="bottom",label="Z") # draw colorbar
plt.title('histogram2d', fontsize=20)
plt.gcf().set_size_inches(18,10)
plt.show()