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The observable representation provides an embedding of a discrete space in a low
dimensional continuous space. Typically, the discrete space is a model of a complex
system. This graphical representation is known to highlight significant properties of the
original space and can serendipitously reveal unanticipated relationships. We report on
the current status of this technique and give examples of its applications and rationale.
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1. Introduction

The observable representation is a way of imaging relationships between objects.
Sometimes it gathers together items that are closely related, sometimes it puts
them on a line. Occasionally it will link objects that you might not have guessed
have any connection. And often the actual distance between points carries useful
meaning. The technique has been applied in several ways, but particularly with
models of complex systems may be expected to aid in the analysis. Briefly, its
power arises because it looks at a transformation of the dynamics (or neighbor-
to-neighbor relationships) that gathers far-flung information, much as the Fourier
transform does. This remark will be elaborated below.

Mathematically, the observable representation is an embedding of a space, usu-
ally discrete, in R™, for some n. In the original formulation [1-3], the space was the
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set of states of a Markov process, but then we found that a great deal of useful infor-
mation was conveyed even without that interpretation [4]. The basic idea is that
there is a matrix (of transition probabilities between states for the Markov process)
and one looks at the “slowest” eigenvectors of that matrix, usefully interpreted as
“observables” (see below for more on this interpretation). Call the underlying space
(that you want to embed) X and call the matrix R. For x,y € X, let Ag(z) be a
left eigenvector of eigenvalue A, so that A\ Ag(z) = Zy Ak(y)Rys. Now select a
collection of eigenvectors Ay, (x), Ak, (), ..., A, (z). Then it is easy to state what
the observable representation (OR) is: it is the set of points {A(z) |z € X}, where
the boldface “A” represents the vector: A(z) = (Ag, (x), A, (x), ..., Ak, ()). For
visualization, “m” is typically 2 or 3, although for other purposes (e.g. identifying
points on the convex hull) higher dimensions enter. In this context “slow” means
that \g is near 1, since the maximum (and slowest) eigenvalue of a stochastic matrix
is one.

The ease of definition is deceptive. There is a wealth of information built into
this set, since each eigenvector responds to the entire matrix, R. As remarked, this
resembles a kind of multi-dimensional Fourier analysis (and in some examples is
exactly that), a dual way of visualizing the space X. And, as stated above, since
each A € R™, it is an embedding of X in Euclidean m-space (see Fig. 8 for a
discussion of complex eigenvectors).

To see why we call the embedding the “observable representation” we recall
the statistical mechanics background of these ideas and in particular why, under
appropriate circumstances, the left eigenvectors of R play the role of observables.
The context is the study of phase transitions. In [2], we showed that first-order
phase transitions are associated with eigenvalue degeneracy near the stationary
state (that which has eigenvalue 1). When that happens, the right eigenvectors,
when restricted to a phase, are (to a good approximation) proportional to the
probability distributions within that phase, while the left eigenvectors are nearly
constant on each phase (and are different in different phases). The left eigenvector
can thus be thought of as the “name” of the phase; it allows one to say, “this is
ice”,
In [5], we go further. First, as for the conventional use of the word observable,
the left eigenvector can be emergent. For example, in a particular Ising model and

“this is water”, since it characterizes what is common to the entire phase.

above the transition temperature, the first left eigenvalue is just the magnetization.
Furthermore, we found that the left eigenvectors can have similar interpretations
when our methods are applied outside the context of phase transitions.

Some of our methods and conclusions are similar to those of “spectral clus-
tering” [6, 7], although the two forms of analysis have arisen from entirely differ-
ent pursuits. In the observable representation we invariably work with stochastic
matrices (reflecting, for example, Monte Carlo approaches to the Ising model),
which are sometimes relevant in other applications as well (cf., in Sec. 3, our
Markov process interpretation of Zachary’s karate club [8]). This context yields
a number of theorems helpful in the interpretation of the images, for example, the
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use of barycentric coordinates for calculating probabilities and inequalities relating
transition probabilities and OR distance (see below). The phase transition back-
ground for our work makes natural the clustering interpretation, although the oppo-
site extreme, in which many eigenvalues cluster around the slowest, has also yielded
surprising information. In particular, it allows a visualization of an underlying space,
whether it be Brownian motion on that space or Brownian motion on a power set
of that space (cf. [4]). The latter investigations also arose from a phase transition
orientation, in particular the desire to include critical phenomena (a.k.a. second
order phase transitions) as objects of our technique.

In this article we will show examples where we mostly understand what is going
on. That’s Sec. 2. Then (Sec. 3) we show several figures, taken from ecology, cell
biology and genetics, where useful information does appear, but whose theoretical
basis is less well-understood. To be specific, various points (representing constructs
of the underlying study, e.g. taxa, proteins, patient tissues) are placed in a sugges-
tive relation to one another, but the practitioner needs to think about what this
“suggestion” means! In the first two of these examples we have hints, while in the
third there are real indications of — at the least — diagnostic value. Then in Sec. 4
we recall some of what has actually been proved in previous works as well as give
new material on the interpretation of the OR; but we emphasize that interpretation
is an ongoing project.

2. Examples Involving Stochastic Processes

Let £(t) be a random walk on a 15 x 15 lattice. Let there be a bump in the middle
and let the walker prefer® to go downhill. The landscape is shown in Fig. 1. Associ-
ated with this Markov process there is a matrix of transition probabilities, R. For
example,

R2.3)(2,4) = Prl§(t + 1) = (2,3) [ £(t) = (2,4)] = Probability that the process is
at the point (2,3) at time-(t + 1), given that it was at (2,4) at time t.

The left eigenvectors of R are designated Ag(z), A1(x), etc., with Ay the function
that is 1 on all states. (The fact that Ay has eigenvalue 1 corresponds to conservation
of probability for the process; thus Ag(y) =1 =), Ao(z)Ray = >, Ray: from y
you go somewhere.) Figure 2 shows the OR for k = 1,2, 3, that is, the set of points
{(A1(2), Az(z), As(x)) |z = (k,0),k, £ =1,...,15}.

The first thing to notice is that the set is contained within a tetrahedron and that
nearly 200 of the 225 points are clustered in the vertices of that figure. Actually,
you cannot really notice the clustering, since they are so close together, but an

a“Prefer” in this context means that we have a Monte Carlo program in which the relative prob-
abities of going uphill or downhill have the ratio exp(—AV/T), with V the altitude in Fig. 1
and T the effective temperature, chosen low enough for the “mountain” to be a significant
impediment.
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Fig. 1. (Color online) Landscape for a random walk on a 15 x 15 lattice (left). The “walker”
wanders from point to (adjacent) point on the lattice, preferring to go downhill, but occasionally
climbing. The distance unit on the lattice is arbitrary and the scale of the altitudes chosen so as
to give a dynamical spectrum illustrating the OR.

P
@
!
®
®

06 04 02 o o g4 1

Fig. 2. Observable representation (OR) for the random walk on the landscape pictured in Fig. 1.
Each circle represents a point on the lattice and its position within the tetrahedron (when expressed
in barycentric coordinates with respect to the extremals) gives the probability of starting at that
point and arriving at one or another extremal. Lines are drawn only to guide the eye: the convex

hull of the OR in this case is a tetrahedron.
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Fig. 3. Enlargement, by a factor 300 (with some rotation), of the upper right hand vertex of
Fig. 2. There are still nearly coincident points at the extremum even with this enlargement.

enlargement, Fig. 3, shows this to be the case (see also [3] for such a blow-up of a
vertex of an apparent triangle).

The same computer program that generates the diagram can also label which
point is which. That is, if you were to focus on one of the points of the OR you
can know which location (i.e. point (k,¢) € X) it is. (This figure does not have
such labeling.) The 4 collections of vertex points correspond to the four basins
of attraction of the landscape. Non-vertex points are those that in the long run
have a significant probability of ending up in more than one possible basin of
attraction. These are points at the top of the “hill” or on the top of the ridges
between basins. Further precision can also be achieved: write the OR-location
of an intermediate point using the barycentric coordinates with respect to the
vertices of the tetrahedron (these are the extrema of this OR; see Appendix A
for the definition of barycentric coordinates). These coordinates sum to one, and
the coefficient (coordinate) with respect to a given extremum is the probability
that starting from the point in question the process will, for long times, find
itself in the neighborhood of that extremum. Proof of these assertions can be
found in [3].

A vparticular feature of the matrix R for the illustrated random walk is that
its spectrum of eigenvalues has, besides the usual “1” (representing conservation of
probability and the existence of a stationary state), 3 additional eigenvalues that
are quite close to 1. Moreover, there is a gap between these 4 leading (largest in
magnitude) eigenvalues and all others. This is characteristic of a multiphase phase
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Fig. 4. (Color online) Observable representation (OR) for a particular quench of a mean field
spin glass.

transition. As we will see, when these ideas are applied to graphs, this eigenvalue and
eigenvector structure can also characterize graphs in which there are well-defined
communities. (This is because on a graph with communities, travel within a com-
munity along the graph is more likely than leaving a community.)

Even without the gap, the extrema can indicate phases of varying lifetime
(in Markov process terms these would be regions of X-space where the system
could be caught and spend a lot of time). A system of considerable interest is the
spin glass, known for its subtle properties as well as for its extremely long relax-
ation times — something that makes those subtle properties all the more difficult
to divine. In Fig. 4 is the OR for the leading non-trivial eigenvalues in the mean
field spin glass [10].> The A; versus A plot is not a simplex because the dimen-
sion is too low. Nevertheless, the extrema represent stable or metastable phases.
In dimension 3, this looks like a tetrahedron, with the two lines on the left and
the right being at right angles to one-another in this embedding. As you continue
to increase dimension, more extrema appear, representing shorter-lived metastable
states. These assertions were checked by studying both the extremal structure of
the convex hull of the OR as well as the energies and dynamical properties (in a
stochastic dynamics simulation) of the particular states of the spin glass.

We have also explored the OR when there is neither gap nor near-degeneracy.
Many of our theorems do not apply. Nevertheless, the OR recovers information
implicit in the transition rate rules — in particular the geometry of an underlying
space. As a simple example, consider Brownian motion on a discrete circle. By this
we mean that the particle can randomly move from k (1 < k < N) to k £ 1, with

bThe figure was generated for the Sherrington—Kirkpatrick model [9] which has N =+1-valued
spins, oy, and an interaction energy F = — > Jrporoe/V N, where Jy, is a collection of quenched
interaction coefficients. They too take the values £1.
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Fig. 5. ORs for Brownian motion on a circle and on a fractal. Magnification of the latter reveals
further fractal structure; see Ref. 4 for a detail of this figure, as well as a graph of the eigenfunctions.

modulo-N addition (so 0 is the same point as V). The OR for this motion is shown
in Fig. 5. More dramatic is the OR for a random walk on a fractal, Fig. 5. (Note:
This figure is not a picture of the space). It is the OR (from computing the eigen-
vectors for the walk on the fractal) — and the OR reproduces the space! A case
of particular interest is the OR for low-temperature Kawasaki (spin-conserving)
stochastic dynamics on a one-dimensional Ising model with periodic boundary con-
ditions. Remarkably, this reveals the geometry of the underlying space — not the
space of spins — which in this case is basically a circle. This demonstrates that
built into the OR is also the ability to detect properties of spatial correlations, an
important correlate of 2nd order phase transitions. See Ref. 4, where many other
examples are given.

3. Examples Involving Graphs

A famous graph is that associated with Zachary’s karate club [8]. This club, com-
prised of 34 individuals, was the subject of an anthropological study in which indi-
viduals were considered either connected or not, based on Zachary’s assessment of
their relationship; hence the graph. Subsequently the club split and that graph was
studied (by us and by many others [12]) to see if it predicted the composition of
the split components.

A graph is abstractly given by an adjacency matrix and one can think of this as a
stochastic process. Perhaps for a karate club a Frisbee game would be insufficiently
dynamic, but one could imagine that if they did play Frisbee, they would toss it
to those to whom they are connected according to Zachary’s study. The Markov
process is then the succession of Frisbee tossers. With this interpretation, if A is
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the adjacency matrix (all 0’s and 1’s), then Ry, = Akg/zj Aj¢.° The reason we
sum over j in the denominator is that Ry, is the probability that ¢ tosses to k.
This implies that the sum over £ must be 1, since ¢ tosses it to somebody. For other
graphs, the relation between A and R can be different, and other interpretations
are possible.

With this prescription, our study of the karate club [14] gave more or less the
breakup that actually occurred. Our criteria were based on the OR, although with-
out the visualization that we now find so useful. In this, we followed earlier work
on coarse graining in statistical mechanics [5]. (Again we refer to our articles for
details.)

We next collect graphs of biological interest. The OR message in these is not
always clear; nevertheless, it is clear that there is a message.

Our first example is from ecology, a trophic food web, or biomass transfer net-
work, of the Florida Everglades and associated regions [15-17]. We then discuss a
protein interaction network for yeast [18, 19]. Finally we deal with an epigenetic
pseudo-dynamics, specifically, a matrix in which distances are a function of the
closeness of tissue samples based on gene expression. Tantalizing results show that
the OR provides useful information in all these settings. For the last case, in par-
ticular, there is a strong indication that the OR could have predictive or diagnostic
value.

3.1. A trophic food web

A trophic food web tracks how biomass, represented by carbon, moves through a
system of organisms within a particular ecosystem. The network is composed of a
number of compartments, representing individual species, groups of related species,
or other entities such as the collection of organic particulates.? The amounts of
biomass exchanged between pairs of compartments, in kilograms of carbon per
square meter, then defines the network.

To create an OR we define a pseudo-dynamics. For this example, we define
the transition matrix R (between compartments) to be proportional to the biomass
transfers. Specifically, R;; = Tj;/ >, Tkj, where Tj; is the amount of biomass trans-
ferred from compartment-j to compartment-i. In other words, a unit of carbon
moves through the system with transfer probabilities proportional to the amounts

©The ambiguity in going from an arbitrary N x N irreducible matrix with non-negative elements
to a stochastic matrix is characterized by an N-vector, call it f(z), x € X. For suppose you
had a stochastic matrix, R. Replace each off-diagonal element, Ruy, by Rzy/f(y) and adjust the
diagonal term so that the column sum is unity. (The condition 0 < Rgy < 1 restricts the class
of f’s.) The new matrix is obviously stochastic and if pg(x) was the stationary state of the original
matrix, po(z)f(x) is the new stationary state. Note though that currents are unaffected by this
transformation. This transformation can, however, seriously affect the OR. Nevertheless, in our
experience, choosing any of a variety of simple methods for making a matrix stochastic did not
affect our qualitative results.

dNote that the same authors use the word “compartments” in other senses as well [11].



Visualizing Relations Using the “Observable Representation” 837

of biomass being exchanged. An important detail, however, is that these food webs
are not closed systems; they have both input and output, and there is an exchange
of material with the ambient environment. Omitting such transfers would lead to an
apparent non-conservation of biomass. To overcome this, we add a connection from
the output compartments to an input, ensuring conservation. This effectively cre-
ates reservoirs (as in systems in contact with heat baths at different temperatures)
and allows currents in the stationary state.

We focus on a comprehensive study of the food web in Florida Bay [16], a tropical
lagoon in the Florida Keys and a series of mangrove-lined bays at the southern end
of the Florida peninsula. Our data are taken from the material on the researchers’
website, http: //www.cbl.umces.edu/~atlss/FBay001.html.

In Fig. 6, we show a plot of the connections between compartments, using con-
ventional graphing techniques. Due to the dense number of connections between
compartments, this graph is not informative.

By contrast, the OR, Fig. 7, is more manageable. It (automatically) groups the
compartments into related categories (primary producers, fishes, etc.). The lines
connect points on the faces of the convex hull. The most evident feature is that the
primary producers and detritus define the outer limits of the convex hull and are

Fig. 6. (Color online) The Florida Bay trophic network in which node locations are determined
by the Graphviz force-spring algorithm [13]. Symbols roughly correspond to the categories used
in Figs. 6 and 8.
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Fig. 7. (Color online) OR for the first 3 eigenvectors of the Florida Bay C transfer graph. Each
point represents a compartment, and symbols indicate similar compartment types. The numbers
correspond to the listing in [16].

largely outside the plane occupied by most of the other categories. A conceptually
similar sorting takes place in a collection of keywords drawn from the literature of
complexity theory [20]. The keywords of greatest generality gravitate to the outside,
while those that are more specific are in the interior.

We next collect a number of observations based on this graph and others. In the
present article we do not provide all the evidence for these observations: not only
would the number of figures required be prohibitive, but much of our information
is best gleaned by real-time rotations of the figures, using the same software as
was employed for generating the graphs (MATLAB®). In addition we would some-
times enlarge symbols for some taxa or categories of taxa, to allow more holistic
comprehension of the data.

Note that some points cluster, but not in the fashion observed in the phase
transition ORs (see Figs. 2 and 4). This occurs because (as we checked in detail)
the clustered taxa are nourished to a large extent by the same source (or for the
transpose matrix, are either eaten by or decay to the same compartment). The
theory behind this goes back to the definition of the vectors in the OR, to wit:

MeAg(z0) = Ap(y) Ryay- (1)
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Fig. 8. (Color online) The OR of the Florida Bay biomass transfer network. As above, each point
represents a compartment. Several interesting compartments have been annotated, showing the
“top of the food chain” animals as well as the critically endangered Hawksbill Turtle. Note that
points have been slightly displaced for clarity (without this some points lie atop one another,
as in the vertices of Fig. 2). This figure, plotting real and imaginary parts of eigenvectors, also
illustrates another point. For many applications, R can have complex eigenvalues and eigenvectors.
But because R itself is real, both eigenvalues and eigenvectors come in complex conjugate pairs.
In this case it can be useful to plot real and imaginary parts of the eigenvectors.

Suppose that several taxa, z1, 22, x3 (say), are all nourished by a single (other) com-
partment, say xo — they have no other significant intake. Recall that the original
flow matrix was not stochastic. This leads to ambiguity in producing a stochastic
matrix (alluded to earlier). The choice we make here is to have the diagonal of R
be zero. For R, 4,, i = 1,2, 3, this means that each of these entries is unity. Equa-
tion (1) then becomes A\ Ag(xo) = Ax(x;), i = 1,2,3. If we now further assume
that the As are not too different from one another (which seems to happen for the
larger eigenvalues of the matrix under consideration), it follows that all Ay (x;) have
essentially the same value — which means that they are located in the same place
in the OR. An example of this is shown in Fig. 9, where compartments 90 and 99
are quite close in both the 1-2-3 and the 2-3-4 ORs. Checking actual consumption
values, one does not have precisely the situation just discussed; rather these taxa,
Mackerels and Other Pelagics, have substantially the same diet, largely in compart-
ment 59, but with parallel patterns in other compartments. In Appendix B, we deal
with the theory of the more general situation.

In the Florida Bay graph some compartments are tightly gathered, some are
not. The herpetofauna and the avifauna (respectively) form tight clusters, while
fishes and microfauna are all over the place. This remains true for other large
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Fig. 9. (Color online) OR for the Florida Bay system using eigenvectors [1-3] (left) and [2-4]
(right). The yellow circles indicate the location of compartments 90 and 99, both of which have
substantially the same diet.

eigenvalue ORs. Without greater ecological knowledge we can only speculate as to
the significance of this sorting. Our guess is that the clustered creatures are top
predators and within their groups are not all that different from one another in
terms of diet. Fish (and certainly microfauna) can be both high and low on the
food chain, so that it may be that a finer classification is in order. (We notice that
there is some clustering in subclasses of fishes and macroinvertebrates.)

As remarked earlier, not all the observations made in the last paragraph can be
gleaned from the figure provided. Rather, using MATLAB® software, the plotted
figure was rotated, the marker sizes varied, the image magnified selectively, and
other tricks of viewing were employed. We emphasize that the researcher using the
OR will have all these tools available in the course of carrying out a similar analysis
using any modern computational software.

We have also explored what one gets by looking at the OR for the transpose
of the matrix 7', given above. In this case all the primary producers are lumped
together on one extremum of the convex hull for the lower eigenvalues. On the
other hand, the microfauna appear to be on the outside. Interesting sorting of
other creatures takes place, for example, herbivorous ducks are displaced somewhat
from avifauna, but instead are quite close to herbivorous amphipods.

In the following, we summarize a number of observations we have made from
the OR of the Florida Bay. At this stage we do not know if these are significant or
not, and entries on the list can appear for diametrically opposed reasons: the OR,
is confirming some notion we have about the network or the OR is surprising us
with something that seems not to make sense — and which we hope might be of
interest to the expert for that very reason.

e Big herons and egrets (105) and Small herons and egrets (106) are close to one
another but not as close as some of the other avifauna. Perhaps these compart-
ments are overly general and some details have been lost and this is picked up
by the OR?
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e Odd couples: Manatees (122) and Herbivorous ducks (109) are close together.
Cormorant (104) and Predatory ducks (111) are grouped very closely with Small
shore birds (114) nearby.

e Loggerhead (118), Green (119), and Hawksbill (120) turtles are all very close
together, with Crocodiles (117) nearby but clearly separated. This relationship
remains regardless of which slow eigenvectors are plotted. Has the OR picked up
fundamental similarities and differences between herpetofauna? See Appendix B
for interpretive tools.

e Oithona nana (19) and Paracalanus (20) are very close while Other copepoda
(21) are nearby but separated. The Grey snapper (80) is also (curiously) nearby.
Grey snappers tend to feed on larger crustaceans but some copepoda have been
known to parasitize grey snappers. Is this information present in the trophic
network and the OR is showing it, or has the OR predicted such a possible
relationship?

e The rough overall shape consists of a tilted triangular plane of points dominated
by primary producers on one side; macroinvertebrates on another; and fishes,
avifauna, and herpetofauna on the third. The inner region contains mostly fishes,
but some microfauna and primary producers also appear there.

e We comment further on the fact that the Detritus sits at the extrema of the
convex hull. The eigenvalue spectrum of the matrix does not have the near-
degeneracy associated with phase transitions, so this does not mean that these
are dynamically mutually inaccessible. It does suggest though some degree of
specialization among detritus feeders.

3.2. Yeast proteins

We next present the OR of the yeast protein interaction network [19]. We limited
the network (provided in the supplementary materials of [19]) to interactions of
highest confidence, yielding a graph of 573 proteins and 2097 interactions. The
matrix resulting from the associated graph and its pseudo-dynamics is reducible,
and only its restriction to its largest component is studied. The proteins are either
grouped into functional categories or are listed as uncharacterized.

As shown in Fig. 10, the OR of the yeast network has a structure consisting of
multiple filaments or threads (see Appendix C) emanating from a densely clustered
central region near the origin. Many of these threads correspond to the functional
groups to which the proteins belong. This, coupled with the presence of unchar-
acterized proteins, may allow for predictions of protein functionality based on the
protein’s location in the OR and its relative proximity to other proteins.

The “threads” are reminiscent of structures seen in the lexicon network of
Chavalarias [20]. In Fig. 11 we show both networks, rotated so that their simi-
larity can be seen. In both cases lines peel away from the main body. (This was
our motivation for the study in Appendix C.) The resemblance also leads to the
question of whether the features seen in Chavalarias’ lexicon study are reflected in
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Fig. 10. (Color online) Several views of the OR for the yeast protein interaction network discussed
in Sec. 3.2. The first three figures show combinations of As through As, while the last shows a
magnification of the area near the origin in the A4 versus As plot. Many of the visible threads
correspond strongly to functional categories, while the central region also shows some clustering
based on protein function. Perhaps the distance from the origin (in R™) motivates a centrality
measure, ranking which proteins are “more important” than others?

protein relationships. The lines in his work reflected specializations. (There is also
a kind of inverse matrix in his work that approximately inverts relationships.) We
also suspect that in higher dimension many of these lines are orthogonal (approxi-
mately), as for the star diagram in Ref. 4.

For the lexicon, the amateur can offer opinions: these are also words in ordinary
English and one can easily guess relationships. For the proteins it will take an expert
to make best use of this display.

3.3. Gene expression in the tissues of AIDS patients

In the following example, the OR picks out two members of a population as being
different. We do not know exactly what differences the OR is sensitive to, but we
do know that two members of this population are different, and we believe that the
OR has selected those individuals.
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Fig. 11. Comparison of yeast OR with that of Chavalarias’s lexicon.

The population consists of 10 patients who have undergone an experimental
AIDS treatment. The duration of the treatment was 32 weeks and two tissue samples
were taken from each patient on three occasions: at the beginning, after 6 weeks,
and at the end (32 weeks), for a total of 60 samples. These samples were studied®
to determine which (of the many thousands of) genes in the tissues were expressed.
Based on this, correlations as well as a distance function were defined between the
samples.

From these data, we constructed a matrix, not of transition probabilities, but of
the inverses of the distances. We do not have a systematic justification of why this
should tell us anything about the trial. Nevertheless, as we now show, it revealed a
grouping that would have been otherwise unnoticed. The precise construction is as
follows: Let D(i,7) be the distance function, with each “” and “;” a number from
1 to 60. Person k, k = 1,...,10, gives rise to 6 samples, 2 at each testing interval.
Thus, for example, the end-of-treatment tissues from person #3 are k = 43 and 53.
We now let R(i,j) = 1/D(i, ), and finally arrive at R by dividing R by its column
sums. The diagonal is defined to be zero.

In Fig. 12 is the resulting plot. All 60 points are shown, with blue circles indi-
cating (the 20) samples associated with the first measurement, the red crosses with
the 6-week measurements, and the black stars the final 20 measurements. This OR
is based on the first three non-trivial eigenvectors. It is clear that while the first

¢The data have been kindly provided by Arndt Benecke.
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Fig. 12. OR for eigenvectors (1,2, 3) for the AIDS study. Symbols represent the first (o), second
(x), and third (%) set of measurements, respectively. For 2 pairs of end-of-treatment points we
have indicated the code number of the associated individuals.

two sets are spread throughout the region, the final positions, the black stars, are
far more concentrated in one region of the three-dimensional OR. Only four points
stray from the cluster. It was easy to determine with which patients these points are
associated and it turns out that they correspond to only two individuals, patients
#1 and #3. In other words, while 8 of the patients responded to the treatment
by arriving at a fairly uniform state of gene expression, for the two outliers gene
expression did not move in the same direction.

Unfortunately, because this is an ongoing (at the time of writing) double-blind
experiment, we cannot immediately say whether we have successfully flagged medi-
cally significant information. It is know that one of the ten patients withdrew from
the study but continued to give tissue samples. It is also known that our group of
ten was part of a larger population of 150 of whom three died. So there can very
well have been a true phenomenon to diagnose, but we do not yet know whether
the OR can serve as a tool for this purpose.

4. Some of the Underlying Principles

Why does this work? In dynamic terms (thinking of the Markov process), things
that are placed together in the OR are able to reach each other in relatively short
times. This needs to be qualified, taking into account details of eigenvalue structure
as well as currents! for directed graphs. For example, for the no-current case we

fA current represents flow even in the stationary state. If po(z) is the stationary state and Razy
the matrix of transition probabilities, the current is defined as Jyy = Raypo(y) — Ryzpo(x).
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have the following inequality.® Let p,(u,t) be the probability distribution at time
t of a system whose time-0 position was x € X. Thus p,(u,t) = R!. Define

D(z,y;t) = Z

u

Pz (u» t) — Py (u» t)
po(u)

, (2)

with pg the stationary state. In Ref. 4 it is shown that

D(a,y;1) > \/Z Dalt [4a(2) — Aa(m)P, 3)

with A\, the ath eigenvalue (eigenvalues are labeled in order of decreasing magni-
tude, starting from \p = 1). The sum on the right can be truncated at the mth
eigenvalue, preserving the direction of the inequality. Since the magnitudes of the
eigenvalues decrease monotonically with index we obtain

D(z,y;0)/ Al = | D [Aa(@) = Aay)]”. (4)
a=1

The quantity on the right is the distance in the observable representation. Thus,
two points x and y that are adjacent dynamically — in the sense that the Markov
chain soon nearly-forgets which point it came from — will be spatially adjacent in
the OR.

For the many other properties that can be established, we again refer the reader
to our earlier articles.

To round out the present section, we present new results on the way in which
lines and other lower dimensional subspaces can occur in the OR. Define a thread
as a collection of points in X that communicate with the rest of X through a single
point of the thread. Calling that point, xg, and calling the other points of the thread
T1,,. .., Ty, werequire that Ry,, = 0 for y not in the thread and k = 1,..., p (flow
into the thread is allowed). Then, subject to certain limitations on the spectrum
of R restricted to the thread, the thread forms a straight line in the OR. One can
also generalize this to higher dimension: n-skeins are defined to be subsets of X,
like threads, except that n points can take you to the rest of X (so a thread is
a 1-skein; we will also refer to 2-skeins as threads). In that case, and subject to
similar assumptions on the spectrum, the skein forms an n-dimensional subset of
whatever dimension OR is under consideration. The proof of these assertions is in
Appendix C.

8When there are currents present the inquality developed in Egs. (3) and (4) is usually obeyed,
although we have not found a general way to characterize exceptions. For this inequality one uses
the normalization > po(z)|Ax(z)|? = 1.
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5. Discussion

Bear in mind that the theorems invoked here are generally speaking sufficient but
not necessary. Exceptions do exist, as in our demonstration [2] that phase transi-
tions (manifested as clustering at the extrema in the OR) imply eigenvalue degen-
eracy, and vice versa. However, in general, we do not have much information on the
inverse problem: how to go uniquely from a pattern in the OR to properties of the
matrix R.

Of the three biological examples that we considered we believe the most striking
is the grouping of patients in the AIDS observable representation, very likely fer-
reting out a genetic precursor with predictive value. Is this because this problem is
particularly susceptible to the OR? We do not think so. Rather, when investigating
this system we had at our elbow the provider of the data (A. Benecke) whose ques-
tions and input spurred us to try one or another variation of the OR. We believe
that in other fields as well an interested specialist would help realize the potential
of this method.
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Appendix A. Barycentric Coordinates

We give a two-dimensional example. Let the three 2-vectors Ey, k = 1,2, 3, define
a triangle in the plane and let P be a point within that triangle (expressed as a
2-vector). Then the vector equation

P= ) uE (A1)

k=1,2,3

uniquely defines the numbers (1, f12, 13)." They are the barycentric coordinates of
P. When P lies in the interior (or on the boundary) of the triangle these numbers
are non-negative and sum to one.

hTo see this you can take the dot product of Eq. (A.1) with any 3 linearly independent vectors.
The solvability of the resulting matrix equation depends on the 3 extrema not being colinear.
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Appendix B. OR Features when States have Similar
Input or Output

As usual we have a stochastic matrix, R, on a space X, with z,y € X. We now
assume R,, = 0, a condition we can impose in associating a “transition matrix”
with a graph. The left eigenvector/eigenvalue satisfies

MeAg(z) = Ak(y) Rya- (B.1)
Yy
Because of the zero-diagonal condition, A (x) does not appear in the foregoing sum.
Fix an OR by choosing indices ki, ks, ..., k,, and denote the corresponding
vector
Ak’l (1‘)
Akz ({L‘)
A(z) = . € RP or € C”. (B.2)
Akp (x)
Then one can rewrite Eq. (B.1) as
Akl (’l})
Akl
Ag,y (y)
Ak2
Alz) =) O | Bue =D W) Ry, (B.3)
y#T : y#T
Ay, (y)
)‘k‘p
with
A, (y)
Akl
A,y (y)
)\kz
W(y) = ey (B.4)
Ak, (y)
)‘k‘p

Recall that by virtue of our assumption on the diagonal of R, Zy;ﬂ Ry, =1
Equation (B.2) represents A(z) as sum of vectors, W, over positive quantities
that sum to 1. Therefore the OR point for x, namely A(x), is in the convex hull of
those W (y) such that Ry, # 0.
This leads to two observations about OR structure:

(1) Consider a collection of x € X such that in a single timestep all of them go to
the same collection of y € X. The associated A(x)’s form a subspace (in the
sense of linear algebra) of RP (or CP, as the case may be).
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(2) If 21 and z2 are such that Ry,, = Ry, for all y, then A(z1) =~ A(z2).

These results are relevant to our study of the graph of Florida Bay ecology,
Sec. 3.1.

Appendix C. Threads and Skeins

The points of X can be thought of as the nodes of a graph; there is a directed edge
between the nodes y and z iff Ry, # 0.

Define a thread in X to be a subset, {xo,21,...,2,} C X, with the following
properties.

(1) (xo,x1,...,xp) are connected to one another in the graph (there’s a path of
(directed) non-zero R matrix elements from any one to any other).

(2) For2<(¢<p-2,
Ry., =0ify ¢ {z1,29,..., 251}
Note that probability can flow in from outside the thread, but it cannot flow
out.

(3) For{=1orl=p—1,
Rys, =0if y & {zo,22,...,2p—1},
Rys, , =0ify & {x1,20,...,2p}.

This can be generalized to an n-skein, with n elements of the set in contact with
the rest of X. A thread is a 1- or 2-skein. Our definition above is for a 2-skein.

Condition (2) means that the points xo, ..., xp—2 talk only to {x1, z2, ..., zp—1}.
Condition (3) means that z; talks to {z1,22,...,2p—1}, and also to zo (similarly
for x,—1). Moreover, zo and z, can talk to any state in the graph.

These conditions imply that when the random walk on X associated with R
enters the thread (which it can do from anywhere), it performs a random walk
within the thread and can only exit via one of the points, xg or z,.

Figure 13 suggests nearest-neighbor connectivity, although that is not required
by our definition.

A

Y f

~ . ——
/ 7‘.sz5 . oﬁpfg‘%

Fig. 13. A 2-skein.
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We prove the following property of the observable representation associated
with R:
Consider the observable representation (OR) for a collection of eigenvectors
{klr"ykn}a
A(z) = (Ag, (2),..., A, (2)) € R™, (C.1)
with eigenvalues A\, = A+O(e) for j = 1,...,n, for some A. Then up to order e,

A maps a thread onto a plane, and under some conditions, onto a quasi-one-
dimensional curve.

Proof. Let k be in the set {ki, ..., k,}. For a left eigenvector Ay, of R, with eigen-
value \g, we write its defining equation at the points of the thread, bearing in mind
the conditions above.

p—1
)\kAk(l‘g) = ZAk(xj)iju , 2</i<p-2 (CQ)
j=1
p—1
MeAg(z1) = ZAk(xj)ijzl + Ai(z0)Rooar s (C.3)
j=1
p—1
MeAk(2p-1) = > Ar(2))Reja,y + Ak(p) Repar, - (C.4)
j=1
Define
MjEEijzz ) lgjaégp_17 (05)
Ap(j) = Ak(zj), 1<j<p-1 (C.6)
Equations (C.2)—(C.4) can be rewritten as a matrix equation for row vectors:
Ak()\k - M) = (Ak (;L‘())RJCOJC17 0, ey 0, Ak(xp)prxpfl)- (C?)
Solving,
A, = (Ak(xo)Rwoml ,0,...,0, Ak(xp)Rxpxp,l)()\k — M)il. (08)

Bearing in mind that the right-hand side of Eq. (C.7) has only 2 non-zero compo-
nents, this can be explicitly written as

Ap(z5) = Ap(0) Ragay (A — M) ™")1j + Ap(2p) Rapa, (A = M) )pon 5. (C9)

Now consider the OR for the given collection {k1, ..., k,} labeling eigenvectors
and eigenvalues:

A(z) = (Ag, (2), ..., Ap, (z)) € R™ (C.10)

As stated, we assume that the eigenvalues {\;} are close to one another, i.e., there
is a A such that |[A — A, | <€,Vj=1,...,n, for small e. Then by Eq. (C.9)

A(xj) = A(xo)a; + A(xp)bj + O(e), (C.11)

since (A\x — M)~1 is nearly independent of k.
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Equation (C.11) implies that the thread lies in a two-dimensional subspace of
the OR. With conditions on nearest-neighbor-only connections within the thread we
expect that this will further imply that it actually lies on a line, as for our experience
with Brownian motion, but we have not yet determined those conditions precisely.

Clearly, if there is only one point at which the thread is connected to the rest of
X (so the thread is a 1-skein) the OR subset for the thread lies on a line. In general,
a k-skein (k points talking to the rest of X) will lie in a k-dimensional subset of the
OR (as follows from the number of non-zero contributions on the right-hand side
of the equation for A).

We remark that the spectral assumption on “M” is not trivial and when there
is overlap with the eigenvalues of the A’s of the OR our result breaks down.
This is because the inverse (M — \)~! can be sensitive to small differences in the
eigenvalues.
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