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Network models with preferential attachment, where new nodes are injected into the network and form

links with existing nodes proportional to their current connectivity, have been well studied for some time.

Extensions have been introduced where nodes attach proportionally to arbitrary fitness functions.

However, in these models, attaching to a node always increases the ability of that node to gain more

links in the future. We study network growth where nodes attach proportionally to the clustering

coefficients, or local densities of triangles, of existing nodes. Attaching to a node typically lowers its

clustering coefficient, in contrast to preferential attachment or rich-get-richer models. This simple

modification naturally leads to a variety of rich phenomena, including aging, non-Poissonian bursty

dynamics, and community formation. This theoretical model shows that complex network structure can be

generated without artificially imposing multiple dynamical mechanisms and may reveal potentially

overlooked mechanisms present in complex systems.
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Growing network models have been introduced to study
the topological evolution of systems such as citations
between scientific articles [1–4], protein interactions in
various organisms [5,6], the World Wide Web [7], and
more [8,9]. Meanwhile, recent interest has been drawn
towards understanding not simply the topology of these
systems or how the individual system elements interact, but
also the temporal nature of these interactions [10]. For
example, studies of the burstiness of human dynamics
[11,12], whether by letter writing [13] or mobile phone
usage [14], have advanced our knowledge of how infor-
mation spreads [15–17] through systems mediated by such
dynamics [14,18,19].

One of the most successful mechanisms to model grow-
ing networks remains preferential attachment (PA) [7,20].
The original PA model starts from a small seed network
that grows by injecting nodes one at a time, and each newly
injected node connects to m0 existing nodes. Each existing
node i is chosen randomly from the current network with a
probability proportional to its degree: PPAðiÞ ¼ ki=

P
jkj,

where ki is the degree, or number of neighbors, of node i.
This ‘‘rich-get-richer’’ mechanism leads to scale-free de-

gree distributions, PðkÞ � k�ð1þaÞ, where the earliest nodes
will, over time, emerge as the wealthiest hubs in the net-
work, accruing far more links than those nodes injected at
later times. This strong early-mover advantage is one of the
most striking features of PA.

PA alone cannot account for topological and statistical
features observed in real networks such as dense modular
structures [21] and high clustering (the abundance of tri-
angles beyond what is expected by chance) [22], and its
most significant feature, the scale-free degree distribution,
collapses in equilibrium situations (in which node injec-
tions are balanced by node removal) [23]. However, the
success of PA is the identification of a minimal set of
mechanistic ingredients (growth, degree-driven attach-
ment, and thus positive feedback) that are required to
account for a universal feature abundant in many real
systems.
PA has thus been the basic starting point for more

complex models that generalize the approach to include
fitness variables [4,24] and temporal correlations [25] to
account for higher clustering and community structure
observed in real-world scale-free networks.
Here, inspired by the simplicity and generality of PA, we

address the following general question: What are the dy-
namic and topological consequences if the attachment
propensity of incoming nodes is determined by a target
node’s neighborhood instead of its pure degree. Although
this type of modification of the original PA model is small
mechanistically, we show that the dynamic consequences
are substantial. Our model exhibits emergent aging and
temporally correlated dynamics, and it naturally possesses
negative feedback in the attachment propensity of existing
nodes. Numerical investigations supported by theory show
that these effects are controlled entirely by the attachment
process. No additional, artificially imposed rules are
necessary.
We adapt the original preferential attachment network

growth model in the following way. Instead of attaching to
an existing node i with probability proportional to its

*bagrowjp@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 3, 021016 (2013)

2160-3308=13=3(2)=021016(6) 021016-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.3.021016
http://creativecommons.org/licenses/by/3.0/


degree ki, we attach proportional to its clustering coeffi-
cient (clustering attachment, or CA)

PCAðiÞ / c�i þ �; where ci ¼ 2�i

kiðki � 1Þ (1)

is the clustering coefficient of node i, �i is the number of
links between neighbors of i or, equivalently, the number of
triangles involving node i, � is a constant probability for
attachment (which may be zero), and the exponent � is a
parameter in our model. Other aspects of network growth
remain the same. (We assume each new node attaches to
m0 ¼ 2 existing nodes throughout; the features are the
same for m0 > 2, but calculations become more cumber-
some.) We investigate both growing and fixed-size evolv-
ing networks. For the latter, a random node is removed
every time a new node is added.

For the original PA mechanism, the only possible ‘‘re-
action’’ upon attaching to i is to increment its degree, i.e.,
ki ! ki þ 1. For CA, however, two reactions are possible:
ðki ! ki þ 1;�i ! �iÞ or ðki ! ki þ 1;�i ! �i þ 1Þ.
While the degree always grows, the number of triangles
�i around i depends on whether a neighbor of i also
receives a new link.

These two reactions lead to the following potential
changes in the clustering coefficient of the existing node
before and after the attachment:

�ðþÞci ¼ 2

ki þ 1

�
1

ki
� ci

�
; �ð�Þci ¼ � 2

ki þ 1
ci: (2)

Here, �ðþÞci is the change due to connecting to i and a

neighbor of i, while �ð�Þci is the change due to connecting
to i and a non-neighbor of i. Even when a new triangle is
formed, the clustering coefficient after an attachment is
almost always less than it was before: An increase in c after
a new node’s attachment is only possible if the existing
node has degree k > 1=c. This means that, in contrast to
PA, the CA mechanism does not feature rich-get-richer
effects. Instead, attaching to a node i drives down i’s
probability for further attachments. A pure CA system
will not exhibit a power-law degree distribution because
negative feedback prevents the emergence of hub nodes.
Instead, networks grown according to CA exhibit an ex-
ponential tail in the degree distribution. Forming new links
based on the clustering coefficient provides a particularly
simple model of such negative feedback or preferential
inhibition.

Yet, temporal effects play a role here as well, with the
temporal sequence of node injections determining what
happens to subsequent nodes. For example, suppose a
new node is injected and happens to form a triangle. This
will give that new node maximum c; it may become a hot
spot for future attachments. In Fig. 1(a) we draw a single
realization of the CA model with N ¼ 1000 nodes and
� ¼ 2. Qualitatively, we observe that CA dynamics natu-
rally gives rise to community structure [21], where the hot

spot forms the seed for a new dense group to grow. These
communities tend to form sequentially: A hot spot forms
and then many nodes attach to it, driving its attractiveness
down until another seed appears. This repeating process
emerges naturally from the attachment mechanism; noth-
ing has been artificially imposed.
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FIG. 1. Network growth according to clustering. (a) A realiza-
tion of clustering attachment (� ¼ 2). Node size is proportional
to clustering, and node color represents the age of the node (time
since it was injected). Communities emerge approximately se-
quentially in time. (b) A measurement of the model’s community
structure using modularity Q by running a community detection
algorithm [26] while a network evolves according to CA. Raw
modularity scores may be problematic since sparsity alone can
potentially forceQ to high values [28,29]. We instead considerQ
relative to hQi, the average value observed over the course of the
model. We see fluctuations in modularity over time for � � 0 far
larger than observed for purely random attachment (� ¼ 0). This
quantifies the successive emergence and dissolution of modular
structure in the model. These fluctuations occur for both growing
and stationary networks. (c) The relative distributions of Q
during the temporal evolution shown in (b). The random case
is sharply peaked about its average value. (d) The clustering
coefficient averaged over all nodes, which increases significantly
as � increases. Clustering is another hallmark of community
structure. Error bars denote �1 s:d.
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We quantify the presence and evolution of these com-
munities by running a community detection method [26] as
a network evolves according to CA. Figure 1(b) depicts the
optimized modularity Q of the communities found by the
method. Higher values of Q can be used to indicate ‘‘bet-
ter’’ communities [27]. However, raw values of Q should
be interpreted with caution, as Q can become very large
due only to sparsity in the network [28,29]. Instead, in
Fig. 1(b) we plot modularity relative to its average value
over the evolution of each CA realization. We see distinct
fluctuations in Q that are not present in the case of a
random network (� ¼ 0) [Fig. 1(c)]. These fluctuations
are due to the sequential growth and decay of communities:
A dense community forms, boosting Q; then it becomes
sparser as more nodes attach to the community, loweringQ
until a new community forms and the process repeats.
These fluctuations are present for both growing and sta-
tionary networks. Further, in Fig. 1(d) we plot the average
clustering coefficient as a function of �. Clustering is
another hallmark of modular structure, and it increases as
� is increased. Taken together, we find that � plays a
significant role in the modular nature of the model.

CA thus can give rise to both correlated network struc-
ture and nontrivial temporal dynamics. An important
question, however, is if this behavior is present for the
entire range of exponents � or if a critical parameter
threshold exists. To understand this and characterize the
dynamics further, we now explore (i) the aging dynamics
of individual nodes after injection and (ii) the influence
that older nodes exert on newly injected ones. For the
latter, we fix the size of the CA networks by removing a
randomly chosen node alongside each new injection, as
per Fig. 1(b).

When a new node is injected into the system, its degree
kðtÞ and clustering cðtÞ will evolve with the time since
injection t. This new node may then exert an influence on
the time course of subsequent nodes. To see this qualita-
tively, Fig. 2 depicts ‘‘space-time’’ matrices for three real-
izations of CA. In this matrix, each N � 1 column
represents the clustering coefficients of the network’s
nodes at that time. Nodes are ordered by age. The oldest
node is removed and a new node injected such that the time
course of c for each node forms a diagonal streak across the
matrix. Below each matrix a spike train is shown, high-
lighting the injection times of high-c nodes. As � in-
creases, the injection times of high-c nodes become
temporally correlated, and the clustering coefficients of
those nodes decay more slowly: Both temporal correlations
and individual aging effects are affected by the exponent �
of the CA mechanism.

More quantitatively, by averaging over many realiza-
tions, we measure the expected time courses �cðtÞ and �kðtÞ
for nodes that are injected with c ¼ 1, shown in Fig. 3.
These time courses exhibit approximate power-law decay
(growth) in time for �c ( �k).

To understand the time scaling of �c and �k, consider the
following simple analysis: First, @ �k=@t ¼ PCA and PCA �
�cð �k;�Þ� ��ðtÞ�½ �kðtÞð �kðtÞ � 1Þ��� � �� �k�2�. Assuming
the time evolution of � is approximately constant gives
@ �k=@t� �k�2� or

�kðtÞ � t1=ð2�þ1Þ; �cðtÞ � t�2=ð2�þ1Þ; (3)

where �cðtÞ follows from �cðtÞ � �k�2. Thus we predict, if
the time evolution of � is negligible, power-law growth in
time for degree with exponent 1=ð2�þ 1Þ and power-law
decay in time for clustering with exponent �2=ð2�þ 1Þ.
Despite the simplicity of this calculation, we find good
agreement between simulations and the predicted expo-
nents in Eq. (3); see Fig. 3.
Yet, knowing the expected temporal scaling of individ-

ual nodes’ �cðtÞ and �kðtÞ is insufficient to understand the
emergence of the network structures that we observe. We
also need to understand the temporal nature of hot-spot
injection times. Thus, we turn to the time series of triangle
injections, or the times when nodes are introduced with
c ¼ 1. (For m0 > 2, one can consider the times when new
nodes appear with c > 0.) These correspond to the injec-
tions of high-clustering nodes in Fig. 2.
If a system displays no memory such that the probability

for a spike during any time interval (t, tþ �t) depends only
on �t, then the triangle injections form a Poisson process
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FIG. 2. Space-time evolution for fixed-size networks of N ¼
100 nodes. Each matrix element (i, t) represents the clustering
ciðtÞ of node i at time t. Nodes are indexed from oldest (i ¼ 1) to
youngest (i ¼ N). At each time step, a new node is injected and
the oldest node removed such that the time course of an indi-
vidual node forms a diagonal across the matrix. Below each
matrix is a spike train denoting injections of high-clustering
nodes. As � increases, the clustering coefficients of individual
nodes persist for longer times and the arrivals of high-clustering
nodes become increasingly temporally correlated.
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and the interevent time, or the waiting time between spikes,
follows an exponential distribution. Yet, many systems do
not follow Poisson processes [11,13]. A phenomenon is
considered bursty when it possesses a memory; i.e., the
probability for a new event decays with the time since the
last event, giving rise to a nonexponential interevent time
distribution.

In Fig. 4(a), we study the interevent time distribution for
triangle injections during CA network evolution. (As men-
tioned before, to ensure the system is stationary, for the
temporal dynamics in Fig. 4 we now fix the size of the
network by removing one node at each time step as well.)
When � ¼ 0, there is no memory and the distribution is
exponential, as expected. As � grows, however, the inter-
event time distribution becomes more and more heavy
tailed, indicating increased probability for a triangle to
form soon after a previous triangle was introduced.

A straightforward way to study bursty dynamics is
through the hazard function hðtÞ ¼ PðtÞ=QðtÞ, where PðtÞ
andQðtÞ are the probability and cumulative distributions of

waiting time t, respectively. The hazard function can be
interpreted as the probability rate for a new spike to occur t
time steps following the previous spike, given that no
spikes occur in the intervening time interval. We measure
the hazard functions in Fig. 4(b).
For a Poisson process, hðtÞ is constant. Increasing �

gives increasingly non-Poissonian hazard functions: The
CA mechanism naturally incorporates bursty time dynam-
ics in the sequences of triangle injections.
A typical property of bursty systems is a hazard function

that behaves algebraically for early times,

hðtÞ � t��1; (4)

with a singularity in continuous time for t ! 0. The ex-
ponent � determines the degree of burstiness of the system
(with � ¼ 1 corresponding to the limiting case of a Poisson
process) [30].
We now unify the bursty time dynamics for triangle

formation with the aging time courses for node clustering
[Eq. (3)]. For an active system in equilibrium, the density
of spikes �ðtÞ at time t should become approximately
constant (i.e., independent of time) such that the expected
number of spikes emitted in a time interval ðt; tþ�tÞ is
proportional to �t. (This is not the same as a Poisson
process, as the expectation is over an ensemble of CA
realizations.) Suppose a spike occurred at some past time
� < t (without loss of generality, we shift time so that
� ¼ 0). Then, assuming spikes are rare, a point we will
return to, we approximate the spike density at t by

�ðtÞ �
Z t

0
hðsÞ �cðt� sÞds: (5)

In other words, a spike occurs at t, depending on the
probability for the most recent preceding spike to occur
at s (which is itself governed by the hazard function for the
spike at 0) weighted by the clustering at time t.
Given Eq. (5), what hazard function will give rise to a

constant �? If hðtÞ ¼ const, we have

�ðtÞ �
Z t

0
ðt� sÞ��ds� t��þ1 þ A; (6)

where � ¼ 2=ð2�þ 1Þ from Eq. (3), and the second rela-
tion follows by introducing a constant A to ensure the
initial condition �cð0Þ ¼ 1 and that the integral does not
diverge. When �> 1, �ðtÞ ! const as t ! 1, and thus we
expect an equilibrium system to be a Poisson process for
�< 1=2.
When �< 1, however, no Poisson process can be in

equilibrium for our expected �cðtÞ. Instead, a time-dependent
hazard function hðtÞ � t��1 (� � 1) is necessary:

�ðtÞ �
Z t

0
s��1ðt� sÞ��ds� t���; (7)

where the latter holds when �< 1. Therefore, the system
will be in equilibrium when � ¼ �.
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As we mentioned, Eq. (5) is most valid at low spike
densities, where the typical time between spikes is much
greater than the typical time it takes for �cðtÞ to decay. For
higher densities, the probability for a new spike to occur at
time t will depend upon a superposition of earlier spikes.
Yet, the contributions of the earlier spikes will each be time
independent when � ¼ �. Thus, our derivation should
hold even at higher spike densities.

In summary, if the above arguments hold, we expect an
equilibrium system to exhibit a hazard function hðtÞ � t��1

with

� ¼
�
1 if �< 1=2;

2=ð2�þ 1Þ if �> 1=2:
(8)

Indeed, there is good evidence for this relationship in the
inset of Fig. 4(b).

Discussion.—While positive feedback has been over-
whelmingly studied in complex networks, negative feed-
back remains ubiquitous in nature. There is much room for
modeling network growth besides the traditional degree-
based preferential attachment. A simple twist on this semi-
nal work is to form attachments based on the clustering
coefficient. Doing so naturally creates a negative feedback
mechanism that leads to aging, burstiness, and the forma-
tion of community structure in networks. The simplicity
and robustness of this mechanism is encouraging and may
serve as a starting point for investigating the origin of
higher-order structures in growing networks, as well as
evolving networks that are in equilibrium. The emergence
of communities and highly variable temporal behavior
observed in many complex networks, social networks in
particular, can be investigated from a CA perspective.
Based on our results, it may be promising to investigate
systems in which attachment propensities are determined
by other centrality measures that capture a different aspect
of local network properties.

It is worth considering the potential practical applica-
tions of our CA model. In a poorly understood area such as
complex systems, hypothetical models such as ours are
useful for discovering potentially overlooked dynamical
mechanisms and may serve to direct future empirical stud-
ies to explore such mechanisms. Here, one can imagine
many systems where nodes are drawn not towards hubs,
but towards densely connected groups. For example, in a
social network, individuals may not want to make friends
with a very popular person but, instead, with members of a
small group of very closely knit friends. Such hypotheses
are becoming testable thanks to the appearance of high-
resolution dynamical contact networks and face-to-face
proximity data [31,32]. Being attracted to density may
also play a role in follower-followee networks for flocking
or swarming animals [33], where individuals may wish to
belong to a small but very cohesive group instead of being
part of a jumbled crowd all following a single leader (the
hub animal).

Another area of interest may be the dynamical evolution
of functional brain networks. Indeed, positive feedback is
associated with neurological conditions such as epileptic
seizures [34]. Recently, it has been shown [35] that net-
works derived from functional-magnetic-resonance-
imaging data are better explained by a model where new
connections prefer to complete triangles than by traditional
preferential attachment. This model is still quite different
from our work. It incorporates anatomical distances in its
attachment mechanism, but it demonstrates that clustering
can play a role in the evolution of real systems.
Preferential inhibition can also be used to model fads

and fashions. For example, music listeners may actively
seek musicians that are not well known. This corre-
sponds to attachment probabilities that decrease with
increasing degree, of which clustering attachment is
one example.
The prevalence of community structure in social systems

is not explained by degree preferential attachment alone.
Likewise, social networks typically feature exponential
cutoffs in the degree distribution, simply because people
have limited time with which to maintain social relation-
ships. This may imply that both preferential attachment
and preferential inhibition (or, equivalently, density attach-
ment) mechanisms are involved. Mixing some inhibition
into the system will both inject community structure and
limit the formation of very high degree nodes. Practically,
this means that agents in a system are simultaneously
drawn towards highly connected regions and densely con-
nected regions. We believe that exploring these combined
effects is a very intriguing direction for improving our
understanding of such systems.

We thank F. Simini and S. Redner for many useful
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