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Abstract

Human mortality is in part a function of multiple socioeconomic factors that differ both spatially

and temporally. Adjusting for other covariates, the human lifespan is positively associated

with household wealth. However, the extent to which mortality in a geographical region is a

function of socioeconomic factors in both that region and its neighbors is unclear. There is

also little information on the temporal components of this relationship. Using the districts of

Hong Kong over multiple census years as a case study, we demonstrate that there are differ-

ences in how wealth indicator variables are associated with longevity in (a) areas that are

affluent but neighbored by socially deprived districts versus (b) wealthy areas surrounded by

similarly wealthy districts. We also show that the inclusion of spatially-distributed variables

reduces uncertainty in mortality rate predictions in each census year when compared with a

baseline model. Our results suggest that geographic mortality models should incorporate

nonlocal information (e.g., spatial neighbors) to lower the variance of their mortality estimates,

and point to a more in-depth analysis of sociospatial spillover effects on mortality rates.

1 Introduction

Although Hong Kong is a small island territory, it exhibits significant variation in occupations,

income, foreign inhabitant density, and residence status of workers. In this study, we examine

the benefits and drawbacks of incorporating nonlocal and spatial information into a mortality

model for a limited area with restricted publicly available data. Simulating a realistic scenario

with limited spatial resolution, we show heterogeneity of such exogenous factors and investi-

gate nonlocal behavioral interactions of prosperity and deprivation across neighborhoods.

We present an analytical evaluation comparing local and nonlocal models to show the

importance of spatial associations for mortality modeling. In particular, we apply a spatial net-

work technique to examine socioeconomic nonlocality among communities. For instance, we

investigate how the magnitude of a socially deprived area can consequently have a nonlocal

effect on its neighbors’ mortality risks. Similarly, we delve into how the spatial spread of
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property of an affluent area can spillover to its surrounding areas, and thus affect their longev-

ity. Our work not only reveals the deep influence of these spatial interactions of districts on

predicting fatality rates, but also provides a method for investigating systematic inference

errors of mortality models.

We structure our paper as follows. We discuss key findings of mortality risk studies in the

literature and how they relate to our case examination in the next section. We introduce and

analyze our data sources in Sec. 3.1. We summarize the economic and social indicators used in

our investigation in S1 File. For our analytical inquiry, we employ a set of Bayesian generalized

additive models to predict mortality rates across districts in Hong Kong. We describe our

experiments and our exposition of the models in Sec. 3.2. First, we present our local model

that does not use any spatial information in Sec. 3.2.1. We compare our Baseline design to two

nonlocal spatial models in Sec. 3.3.2. Our first nonlocal model uses spatial features from the

nearest neighbours, while the second uses features from all neighbours weighted by their dis-

tance to the target area. We will refer to the nonlocal models as SP, and WSP respectively. We

show our findings in Sec. 4, highlighting the computational complexity of each method and

discussing the benefits and shortcomings of each design. Our evaluation also reveals evidence

of sociospatial spillovers of mortality rates. We conclude with some remarks on the limitations

of our investigation and potential future work.

2 Related work

2.1 Mortality risks and social deprivation

There are many studies that delve into the temporal dynamics of mortality risks with respect

to nation-wide epidemics [1, 2], pollution [3, 4], and life expectancy [5] over the last decade.

Researchers have hypothesized and identified several connections of longevity, social depriva-

tion, and socioeconomic discrimination [6–8]. Notably, there are many interpretations of

social deprivation. Messer et al.’s study [9] offers a well-written overview of socioeconomic

deprivation in the literature. The authors highlight the limitations of such definitions and pro-

pose an alternative method to calculate and standardize what they call a “neighborhood depri-

vation index” (NDI). Employing principal components analysis (PCA) on census data from

1995 to 2001, they illustrate the effectiveness of their proposed measurement at capturing

socioeconomically deprived counties in the US.

Others have investigated a wide range of socioeconomic, psychological, and behavioral fac-

tors of fatality risks [10]. We often examine the notion of disparity in health and mortality

risks using population-scale inputs and sensitive individual variables such as age, race, and

gender respecting the privacy concerns that emerge from such applications [11]. Ou et al. [12]

infer socioeconomic status by type of housing, education, and occupation. They find that

regions with lower socioeconomic status have higher rates of air pollution. They also report

that neighborhoods with higher densities of blue-collar workers have higher rates of air pollu-

tion-associated fatality than others. Chung et al. [13] present evidence of inequalities condi-

tioned on age as a control variable. The authors investigate the impact of socioeconomic status

amid the rapid economic development of Hong Kong. Their findings suggest a decline in

socioeconomic disparity in mortality risks across the distrcits of Hong Kong from 1976 to

2010. They also show that various health benefits brought by economic growth are greater for

regions with higher socioeconomic status. The market share of health benefits is unequally dis-

tributed among groups of varying status: Individuals with higher socioeconomic status have

access to greater benefits than those of lower socioeconomic status. In the present study, we

use a set of socioeconomic attributes including income, unemployment, and mobility, to

define and capture the some of the ramifications of social deprivation in Hong Kong.
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2.2 Spatial association of mortality risks

Spatial associations between income disparity and health risks are widely understood both

internationally, and for individual cities and states [14–20]. Local attributes play a powerful

role in the model dynamics, given the assumption that socioeconomic factors vary geographi-

cally. Studies have shown the importance of spatial associations in identifying relations

between socioeconomic deprivation and longevity. Although researches have examined

income inequality, they often use a spatially localized approach in their investigations [21–25].

Geographically weighted regression (GWR) is a commonly used method designed to exam-

ine spatial associations [26, 27]. Fotheringham et al.argue socioeconomic features are intrinsi-

cally intra-connected over space because of the mechanisms by which communities develop.

Their study makes an empirical comparison of their proposed method (GWR) to other sta-

tionary regression models to investigate the spatial distribution of long-term illness in the UK.

Others have looked into the spatial association between air pollution and mortality in Hong

Kong [28], Czechia [29], Rome [30], and France [31]. Cossman et al. [32] examine the spatial

distribution of mortality rates over 35 years, starting from 1968 to 2002 across all counties in

the US. The study highlights a nonrandom pattern of clustering in mortality rates in the US,

where high fatality rates are primarily driven by economic decline.

To assess geospatial associations between pollution and mortality in Hong Kong, Thach

et al. [33] examine the spatial interactions of tertiary planning units (TPUs) [34]—similar to

census-blocks in the US. The authors show a positive spatial correlation between mortality

rates and seasonal thermal changes in Hong Kong. They argue that the variation between

TPUs is a key factor for cause-specific fatality rates. Their results show that socioeconomically

deprived regions have higher fatality rates, especially during winter.

2.3 Sociospatial factors of death

Studying the relative spatial interactions of social and economic indicators dates back to

decades ago. Researchers delve into measuring nonlocal and/or interdependent interactions of

inequality in life expectancy [35], health care [36], education [37, 38], and decision-making

[39, 40]. Many methods have been proposed to identify and examine broader dimensions of

inequality from a spatial point of view such as Moran’s I and spatial auto-regression [41–43].

Yang et al. [44] argue that mortality rates of counties in the US are associated with social and

economical aspects found in neighboring counties. Their findings suggest that fatality rates in

a county are remarkably driven by social signals from bordering counties because of the spill-

over of socioeconomic wealth or social deprivation across neighborhoods. Another recent

work by Holtz et al. [45] highlights the significant influence of nonlocal interactions and spill-

overs on regional policies regarding the global outbreak of COVID–19. Employing a network-

based approach to explore the dynamics of communities and their impact on mortality risks,

we present here a small-case study using a collection of datasets from Hong Kong. In our

study, we use three different models to illustrate the role of spatial associations by comparing

models with spatial features to a baseline model without spatial factors.

3 Materials and methods

3.1 Data sources

Census data. We collected socioeconomic variables curated by the Census and Statistics

Department of Hong Kong [46]. We have three snapshots at 5-year intervals, 2006, 2011, and

2016. For each year, the dataset includes the total population density by district, median

income, median rent to income ratio, median monthly household income, unemployment
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rates, unemployment rates across households, unemployment rates among minorities, the pro-

portion of homeless people, the proportion of homeless mobile residents, the proportion of

single parents, the proportion of households with children in school, the proportion of house-

holds with children (aged under 15), and the proportion of households with elderly (aged 65

or above).

Mortality data. We use the official counts of known and registered deaths provided by

the Census and Statistics Department of Hong Kong [47]. The data set contains 892,055 death

records between 1995 and 2017. Every record includes a wide range of information such as

age, gender, and place of residence (TPU) [34]—a geospatial reference system used to report

population census statistics. Our mortality records have both place of occurrence and place of
residence. Each of those spatial features is certainly important to paint a better picture of the

microscopic spatial associations of mortality and other social and economic factors. For our

study, however, we only use place of residence as our primary geographic unit and discard all

years other than the census years to cross reference our death records with other socioeco-

nomic characteristics for each district. We derive an annual crude death rate of each district by

simply dividing the number of registered death records by the population size for each calen-

dar year such that:

Yit ¼
NitðdeathsÞ

Nitðcensus populationÞ
;

for district i and t 2 [2006, 2011, 2016].

Life insurance data. We have obtained data from a Hong Kong based life insurance pro-

vider. According to the Hong Kong Insurance Authority [48], our provider had roughly 2.5%

market share of all non-linked individual life insurance policies issued in Hong Kong in 2016.

We normalize the number of polices issued at the district level by population size for each time

snapshot to report the proportion of individuals insured by each district. Notably, our variable

is limited to policies sold by a single company and thus affected by the sociospatial features of

the company market share such as the spatial sparsity of its agents and offices, and the social

characteristics of consumers who would choose our provider over other life insurance provid-

ers in the area. However, statistical and detailed data sources regarding life insurance policies

are often proprietary, especially with a similar spatial resolution to the one presented in our

study. Although our data on life insurance policies may not represent the full population, it

provides an example of the data that an insurance company can use to build their models.

Given the scarcity of such data, we use our records of life insurance policies as a useful comple-

mentary wealth indicator—among other variables such as income, rent and unemployment—

which is absent from most studies.

Geospatial unit. Initially, we planned to use TPUs as the main geospatial units to cross-

reference our data sources. However, we identified a large subset of missing TPUs in death rec-

ords, as records in small TPUs may reveal sensitive information about specific individuals

there. To avoid any risk of identifying individuals in the data set, we use districts as our main

spatial unit of analysis [49]. This choice is consistent with prior work, where most studies have

either filtered out small TPUs in their analyses [13, 28], or aggregated their records at the dis-

trict level [33] to overcome this challenge.

Categorization. We organize our features into three different categories.

1. Base: This set has most of the socioeconomic features in our data sets such as population

density, unemployment rates, the proportion of homeless people, mobile residents, and sin-

gle-parent households. However, we do not include wealth-, age-, or race-related features

here.
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2. Wealth: Besides the base features described above, we include median income, median

rent-to-income ratio, median monthly household income, and life insurance coverage by

the district.

3. All: This set includes all features in our data set, including sensitive variables—from a socio-

political perspective—such as the proportion of minorities and unemployment rates among

minorities. This set also includes age-related features such as the proportion of young and

elderly residents for each district.

3.2 Statistical methods

There are many statistical modeling paradigms to tackle this task. Each of which comes with

its own costs and benefits. Researchers sometimes use Poisson models to investigate mortality

risks [1, 4, 28, 33]. Others use general linear or multivariate regression models [31, 35, 50]. We

can also see modifications of this family of approaches in the literature such as geographically

weighted regression [26, 27]. In this study, however, we consider the simplest approach. We

use a set of three Bayesian multivariate linear regression models. Our goal is to examine the

addition of nonlocal information, regardless of the distributional assumptions placed on the

response variable Y. Therefore, we keep our model as simple as possible to allow us to investi-

gate the implications of two different spatial models compared to a baseline model that does

not factor in any nonlocal information. We treat the design tensors ~X as exogenous variables

and do not model their evolution across time. A “design tensor” is a rank 3 tensor given by

~X ¼ ð~X1;
~X2; . . . ; ~XTÞ where ~Xt is the design matrix for time period t 2 [2006, 2011, 2016].

Each design matrix ~Xt is of dimension N × (p + 1), where N is the number of observations

which accounts for 18 districts in Hong Kong, and p is the number of predictors. We add an

extra variable to the design matrix to account for a constant in our linear model.

3.2.1 Local model (Baseline). The dynamics of the local models are described by a system

of linear equations,

~yt ¼ ~Xt
~bt þ st~ut; ð1Þ

~bt ¼
~bt� 1 þ~m þ

~L~vt; ð2Þ

log st ¼ log st� 1 þ mþ ‘wt; ð3Þ

for t = 1, . . ., T.

Eq 1 is an ordinary linear model for the response vector~yt as a function of the design matrix

~Xt and coefficients~bt . We presently define the quantities that compose Eqs 2 and 3. We set

~ut;~vt � MultivariateNormalð~0;~IÞ ð4Þ

in Eqs 1 and 2, while wt� Normal(0, 1). Our identity matrix~I is informed by the number of

predictors in our model, and has a dimension of (p + 1) × (p + 1). Hence the model likelihood is

pð~yj~b; sÞ ¼
YT

t¼1

YN

n¼1

pðytnj~Xtn
~bt; stÞ

¼
YT

t¼1

YN

n¼1

Normalð~Xtn
~bt; s

2

t Þ:

ð5Þ
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A graphical model corresponding to Eq 5 is displayed in Fig 1. We also a priori believe that

~bt does not remain constant throughout the time under study, though we are unsure of exactly

how it changes over this time. Thus, we assume a prior on~bt that evolves as a biased random

walk with drift given by~m and correlation matrix ~S with Cholesky decomposition~L.

Likewise, we suppose that log σt evolves according to a univariate random walk with drift

given by μ and standard deviation ℓ. We make this assumption for the same reason: We do not

believe it is likely that σt remains constant over the entire time period of study. The random walk

priors for~bt and σt are each centered about zero because we impose a zero mean prior on~m and

μ. We initialize these random walks with zero-centered multivariate normal initial conditions,

~b0 � MultivariateNormalð~0; ~SÞ; ð6Þ

and

log s0 � Normalð0; ‘2
Þ: ð7Þ

The distribution of~b1:T � ð
~b1; :::;

~bTÞ is thus given by

pð~b1:Tj~m;
~SÞ ¼

YT

t¼1

pð~btj
~bt� 1;~m;

~SÞ ð8Þ

¼
YT

t¼1

MultivariateNormalð~bt� 1 þ~m;
~SÞ; ð9Þ

Fig 1. A graphical model representing the likelihood function given in Eq 5. Latent log σt and βt evolve as biased random walks, while ytn and ~Xtn are treated as

observable random variables and exogenous parameters respectively. The entire temporal model is plated across districts N = 18.

https://doi.org/10.1371/journal.pone.0247795.g001
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with an analogous (univariate) distribution holding for log σ. We set

~m � MultivariateNormalð~0;~IÞ; ð10Þ

m � Normalð0; 1Þ; ð11Þ

so that the prior distribution over the paths of the regression coefficients and log standard devia-

tion are centered about zero—the null hypothesis—for all t.
We place a uniform prior (LKJ(1)) over the correlation component of ~S. The mean of this

prior is at the identity matrix. The vector of standard deviations of ~S,~s, is hypothesized to fol-

low an isotropic multivariate log normal distribution as~s � LogNormalð0; 1Þ. We also place a

univariate LogNormal(0, 1) prior on ℓ, the standard deviation of the increments of log σt. We

make this choice because we do not possess prior information about the appropriate noise

scale of~bt or log σt and the log normal distribution is a weakly-informative prior that does not

encode much prior information about their noise scales.

We did not perform exact inference of this model but rather fit parameters of a surrogate

variational posterior distribution. We use here variational inference to approximate the poste-

rior probability of the design tensor and ultimately run Bayesian inference over these features

[51, 52]. Although traditional methods such as Markov chain Monte Carlo sampling (MCMC)

can offer guarantees of accurate sampling from the target density, it does not necessarily out-

perform variational inference in terms of accuracy [53–55]. Evaluating the costs and benefits

for accurate estimation of posteriors is indeed an open area of research, however, variational

inference offers a much faster and effective method to approximate probability densities

through optimization, even for small datasets [56, 57]. Using variational inference also allows

us to have an agile development cycle and flexible models, as access to more economic and

social data features will continue to evolve, and change over time. The effectiveness and versa-

tility of variational inference has left a remarkable positive impact across disciplines [58–62].

Denoting the vector of all latent random variables by

~z � ðmðsÞ; ‘;~mð~bÞ;Sð~bÞ; log s0:T ;
~b0:TÞ; ð12Þ

we fit the parameters ψ of an approximate posterior distribution qcð~zÞ to maximize the varia-

tional lower bound, defined as the expectation under qcð~zÞ of the difference between the log

joint probability and log qcð~zÞ [52]. We chose a low-rank multivariate normal guide with

rank equal to approximately
ffiffiffiffiffiffiffiffiffiffiffiffi
dim ~z
p

. This low rank approximation allows for modeling of

correlations in the posterior distribution of~z with a lower number of parameters than, for

example, a full-rank multivariate normal guide distribution. All bounded latent random vari-

ables are reparameterized to lie in an unconstrained space so that we could approximate them

with the multivariate normal guide.

3.2.2 Nonlocal models (SP and WSP). We use the road networks in Hong Kong to build

a spatial network of the 18 districts [63, 64]. Each node in the network represents a single dis-

trict. Nodes are linked if they share a direct road or bridge. In Fig 2A, we show a map of Hong

Kong’s districts. We display an undirected network of districts in Fig 2B. By contrast, we show

a fully connected version of the network in Fig 2C. Edges are weighted by their spatial distance

measured by the length of the shortest path dij to reach from district i to district j

wij ¼ expf� ðdij � 1Þg; ð14Þ

and weights decays exponentially as the length of the shortest path increases between any two

districts.
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Similarly, we treat the adjacency matrix ~A as an exogenous variable. We fit two nonlocal

models that leverage the design matrix associated with each district’s neighbors; a spatial

model (SP) that uses the binary adjacency matrix and a weighted spatial model (WSP) that

uses the weighted adjacency matrix. The equations describing the time evolution of this data

generating process are

~yt ¼ ~Xt
~bt þ

~f ð~Xt �
~BÞ~gt þ st~ut; ð14Þ

~bt ¼
~bt� 1 þ~m þ

~L~vt; ð15Þ

Fig 2. Spatial networks of Hong Kong’s districts. (A) We cross-reference the roads and bridges connecting these

districts to build a spatial network [63, 64]. (B) We demonstrate the first undirected network layout of Hong Kong’s

districts. Districts (nodes) are linked if they border each other or share a direct road/bridge in a binary fashion. (C) We

show a fully connected version of the network. For the fully connected network, edges to neighboring districts are

weighted exponentially. Different weighting schemes can be applied here, however, for our application we use the

spatial distance measured by the length of the shortest path connecting any two districts on the network.

https://doi.org/10.1371/journal.pone.0247795.g002
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~gt ¼~gt� 1 þ ~m þ ~L~qt; ð16Þ

log st ¼ log st� 1 þ mþ ‘wt; ð17Þ

for t = 1, . . ., T. The rank three tensor ~Xt �
~B is the outer product of~B � ~A � ~I with the

design matrix ~Xt . The function~f is a reduction function that lowers the rank of the tensor by

one by collapsing the first dimension. Here we take~f to be the mean across the first dimension.

In other words,~f ð~Xt �
~BÞ is a design matrix where~f ð~Xt �

~BÞij is the average of the values of

predictor j over all the neighbors of district i in the network.

The prior distributions for~gt, ~m, ~L, and~qt are identical to those for~bt ,~m,~L, and~ut except

their dimensionality is lowered from p+ 1 to p since we do not include an intercept term in

~f ð~Xt �
~BÞ.

We use Pyro [65], a probabilistic programming language that operates on top of

Pytorch [66], a dynamic graph differentiable programming library, to implement our mod-

els. Our source code along with our documentation is publicly available online on our Gitlab

repository at: https://gitlab.com/compstorylab/asis.

4 Results and discussion

4.1 Observational and analytical findings

In Fig 3, we display the spatial distribution of socioeconomic characteristics for 2006, 2011,

and 2016. Each heatmap is normalized by the mean and standard deviation for each year, such

that darker shades of red show areas above the mean for each of these variables, while shades

of grey show areas below the mean. We show normalized population density in Fig 3A through

3C. We see dense clusters both at the center of the country and on the northwestern side.

We are primarily interested in the geospatial trend across different variables/predictors for

each year, respectively. For example, our heatmaps in Fig 3D–3F show that the southern

islands have higher mortality rates than the average rates of Hong Kong. The southern islands

had higher rates of new life insurance policies in 2006 (Fig 3G), followed by consistently lower

rates than average when compared to the rest of the districts in Hong Kong for each year,

respectively (see Fig 3H and 3I).

The northwestern territories have higher rates of unemployment compared to the south-

eastern side of Hong Kong, as we see in Fig 3J–3L. In Fig 3M–3O, we observe that the east and

center districts have higher normalized median income when adjusted for inflation. We dis-

play additional statistics regarding households in S2 Fig in S1 File.

4.2 Evaluation and comparison of the models

Although we have similar and simple building blocks for our models, they do scale differently

in terms of their computational costs. The total number of parameters in our Baseline model is

equal to pN+ 1, where p is the number of predictors we use for each district. Besides the set of

predictors for each target district, our spatial model SP uses spatial features from the nearest

neighbours (ego-network) to that district. Thus, the total number of parameters used in the SP

model is/ pN �C where �C is the average clustering coefficient of the network. Our WSP model

leverages features from all neighbours weighted by their distance to the target district. It has

the largest number of parameters, which is proportional to pN2. The relative difference in the
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number of parameters among these models urges us to further investigate the benefits of

expanding the models with spatial features.

To evaluate our models, we consider two metrics: mean absolute error (MAE) to estimate

our margin of error and mean signed deviation (MSD) to examine systematic bias. In Table 1,

Fig 3. Temporal dynamics of spatial socioeconomic characteristics of Hong Kong. We show the spatial distribution of five

features in our datasets for three different census years. Here, heatmaps are normalized by the mean and standard deviation.

Darker shades of red show areas above the mean for each of these variables while shades of grey show areas below the mean. (A–

C) We display the spatial growth of population over time. (D–F) We demonstrate the variation of mortality rates, and life

insurance converge (G–I). We see some segregation of unemployment rates in (J–L), and median income in (M–O).

https://doi.org/10.1371/journal.pone.0247795.g003

PLOS ONE Analyzing effects of geospatially-distributed variables in a Bayesian mortality model for Hong Kong

PLOS ONE | https://doi.org/10.1371/journal.pone.0247795 March 24, 2021 10 / 20

https://doi.org/10.1371/journal.pone.0247795.g003
https://doi.org/10.1371/journal.pone.0247795


we report the mean absolute error defined such that:

et ¼
1

N

XN¼18

i¼1

jŶ t
i � Yt

i j;

for each calendar year t 2 [2006, 2011, 2016] in our dataset across all districts. We highlight

cells in blue to show the model with the lowest margin of error, and red to indicate the best

model for all years. We also color cells in grey to demonstrate a tie between two models for a

year.

For our default set of features (Base), we note our WSP model outperformed the rest of the

models in most districts. However, as we add more predictors to the models, we observe a pat-

tern whereby models with fewer parameters perform better. Our results show the SP model

has the lowest MAE across districts when we use the Wealth category, which has 11 predictors

including some wealth-related features as described in Sec. 3.1. The Baseline model—which

does not account for spatial information—has a lower MAE when we feed all predictors to the

models. This is an expected behavior because our larger and richer spatial models get over-

whelmed with too many parameters and very limited data points. We show a detailed break-

down for each model and each district for the calendar year 2016 in Table 2.

We also compute a probability density function (PDF) of signed deviation (Ŷ t
i � Yt

i ) for

each model, which is possible since our models are fully Bayesian and generate a distribution

of possible outcomes. If the models accurately associate features with observed mortality rate,

the distributions would be centered on zero. Conversely, if the models display systematic over-

or under-estimation of mortality rate, the distributions will diverge away from zero, whereby

negative numbers show underestimation and positive numbers indicate overestimation.

In Fig 4, we display the empirical distributions of signed deviation to examine the relative

likelihood of systematic bias for models trained on the default set of features in 2016. We assess

significance of model coefficients using centered Q% credible intervals (CI). A centered Q%

credible interval of a probability density function p(x) is an interval (a, b) defined such that
1

2
1 � Q

100

� �
¼
R a
� 1

dx pðxÞ ¼
R1
b dx pðxÞ. We measure the significance of systematic errors in

each model by computing the 80% CI, whereby systematic overestimation is highlighted in

orange (CI> 0), and systematic underestimation is colored in blue (CI < 0).

We note that our spatial models, especially the weighted spatial model, are effective at

reducing systematic over- and under-estimations. For example, the spatial models reduce the

margin of error in panels B, H, L, and R of Fig 4. By contrast, all three models either overshoot

or undershoot mortality rates drastically in a few districts (see panels D, E, M, and Q in Fig 4).

Our models also provide evidence to suggest that there are significant relationships between

socioeconomic variables, such as household unemployment, percentage of single parents, and

mortality rate. Many of these relations are significant in each of the census periods under

study (2006, 2011, and 2016) while other relations are significant for some census periods but

Table 1. Model evaluation. We report the mean absolute error for each model across all districts averaged over a 1000 trials. The cells colored in blue show the model with

the lowest margin of error for each feature category, whereas grey cells demonstrate ties among two models. The model highlighted in red indicates the model with the low-

est margin of error.

Mean absolute error Base (7 predictors) Wealth (11 predictors) All (16 predictors)

et ¼ 1

N

P18

i¼1
jŶ t

i � Yt
i j Baseline SP WSP Baseline SP WSP Baseline SP WSP

2006 1.19 1.25 1.17 1.25 1.22 1.25 1.32 1.40 1.46

2011 0.99 1.03 0.94 1.02 1.00 1.11 1.13 1.24 1.37

2016 0.90 0.92 0.86 251.09 251.09 1.26 1.20 1.34 1.51

https://doi.org/10.1371/journal.pone.0247795.t001
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not others. We display the distributions of βs in S6 Fig in S1 File—the parameter for the base-

line model. For each panel, we show the kernel density estimation of β as a function of each

variable in the design tensor. We highlight distributions that are significantly above 0 using an

orange color, while distributions significantly below 0 are colored in blue as measured by the

80% CI. Similar demonstrations of spatial and weighted spatial models can be found in S7 and

S8 Figs in S1 File respectively. Besides the distributions of βs, we also show the kernel density

estimation of γs—the hyperparameter used for the spatial competent in each model in S9 Fig

in S1 File.

All three models are fairly accurate nonetheless. Access to a wider range of predictors and

longitudinal data will help reduce our margin of error in estimating mortality rates. However,

the spatial models allow us to capture nonlocal and interdependent interactions among the

social and economic features across districts that would not be possible otherwise using the

baseline model.

4.3 Evidence of sociospatial spillovers

The districts of Sai Kung, Sha Tin, Wong Tai Sin, and Southern are poorly fit by our models in

2016. In Fig 5, we inspect the characteristics of each district and its neighbors. The first three

rows show how all three models overestimate mortality rates for the Sai Kung and Sha Tin dis-

tricts (Fig 5A and 5B), while underestimating the other two districts (Fig 5C and 5D). For each

district, we plot the standardized score of some socioeconomic features (black markers). We

also display the corresponding average value of the same features from the neighboring dis-

tricts derived from our network and denoted with orange markers to examine the effect of

neighborhoods on these areas.

Table 2. Model evaluation by district. We report the mean absolute error for each model in 2016 averaged over a 1000 trials. The cells colored in blue show the model

with the lowest margin of error for each district and feature category, whereas grey cells demonstrate ties among two models for a district. The model highlighted in red

indicates the model with the lowest margin of error across all districts, respectively.

Mean absolute error Base (7 predictors) Wealth (11 predictors) All (16 predictors)

e2016
i ¼ jŶ 2016

i � Y2016
i j Baseline SP WSP Baseline SP WSP Baseline SP WSP

ISLANDS 1.39 1.03 2.09 1.71 2.37 2.07 2.09 2.72 3.17

KWAI TSING 0.82 0.65 0.61 0.78 0.65 1.01 250.95 250.95 1.18

NORTH 0.59 0.84 0.54 1.42 1.04 1.39 1.93 1.72 1.90

SAI KUNG 251.41 251.41 1.78 1.52 1.99 1.63 1.59 1.82 1.89

SHA TIN 1.26 1.43 1.15 251.40 251.40 1.62 1.56 1.72 1.81

TAI PO 250.62 0.88 250.62 0.85 0.96 1.11 0.94 1.33 1.40

TSUEN WAN 0.36 0.57 0.49 250.55 250.55 0.67 0.63 0.78 0.77

TUEN MUN 0.65 0.71 0.60 1.47 1.16 1.72 1.49 1.18 1.45

YUEN LONG 250.63 0.81 250.63 0.54 0.68 0.80 0.69 1.00 0.99

KOWLOON CITY 0.41 0.67 0.54 0.51 0.65 0.74 0.68 0.94 0.98

KWUN TONG 0.61 0.77 0.83 0.96 0.84 1.09 1.15 1.47 1.46

SHAM SHUI PO 0.55 0.46 0.38 0.60 0.52 0.77 250.73 250.73 250.73

WONG TAI SIN 1.79 1.80 1.70 2.29 1.95 2.47 1.72 1.25 1.45

YAU TSIM MONG 0.79 0.51 0.71 1.37 1.19 1.22 0.81 0.96 0.92

CENTRAL & WESTERN 250.75 0.82 250.75 251.15 251.15 1.61 1.91 2.20 2.95

EASTERN 0.65 0.56 0.77 0.78 0.75 0.94 0.70 0.96 0.97

SOUTHERN 1.42 1.80 1.23 1.06 0.92 1.32 1.34 1.41 1.85

WAN CHAI 250.77 0.95 250.77 0.60 0.79 0.79 0.69 1.03 1.12

https://doi.org/10.1371/journal.pone.0247795.t002
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Fig 4. Relative likelihood of systematic bias for models trained on the default set of features in 2016. We examine the distribution of probable

outcomes of signed deviation by computing the difference between our predictions Ŷ 2016
i and the ground truth mortality rates Y2016

i for each district. A

perfect model would have a narrow distribution centred on 0 (solid red line going across). Positive values show overestimation, whereas negative values

show an underestimation of mortality rates for each district. We color models with significance systematic overestimation in orange, while use blue to

highlight models with significance systematic underestimation as measured by the 80% CI.

https://doi.org/10.1371/journal.pone.0247795.g004
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The first two districts (Fig 5A and 5B) have lower mortality rates than average mortality of

Hong Kong. They are significantly overestimated by our models, while mortality rates in their

neighboring districts hover around average mortality rate of Hong Kong. The other two dis-

tricts (Fig 5C and 5D) have higher mortality rates and surrounded by districts with lower mor-

tality rates. The qualitative difference among these districts provides additional evidence of

sociospatial and economic spillovers in mortality risks. We can see spillovers of wealth in Fig

5A and 5B with a higher median income in the district being associated with a higher median

income in its neighborhood. Though districts in Fig 5C and 5D are located in a wealthy neigh-

borhood, they still have a lower median income. The Wong Tai Sin district has a lower number

of mobile residents than average (see Fig 5C). In Fig 5D, we see an extraordinary higher num-

ber of homeless people compared to the neighboring population. A higher percentage of

minorities can also drive our systematic errors in this district, which hints at disparities in

mortality risks in the area. We would need further analyses with finer geospatial resolution to

explain this behavior.

We also analyze our signed deviation distributions through a local ego network approach.

An ego network of a node is the network comprising that node and its nearest neighbors. Here

each node is a district and its neighbors are that district’s neighboring districts. The joint dis-

tribution of mortality at time t and district i and the model mortality rate prediction condi-

tioned on location at node i can be concisely represented in the form of an ego network for

each district. We display an example of this representation in Fig 6. We color nodes by stan-

dardized mortality rate and edges by standardized signed deviation error. Though this is an

exploratory method that deserves greater expansion and attention in future work, we note

qualitatively that the local view of predicted mortality versus true mortality varies substantially

as a function of district. For example, the district of Wan Chai is connected to four other dis-

tricts, three of which have substantially higher mortality than average and in particular higher

mortality than Wan Chai itself, which has lower mortality than average. The model predictions

Fig 5. Impact of sociospatial factors on mortality risks. The first three rows show the mean signed deviation for four districts that are

poorly fit by our models. (A, B) We show districts with systematic overestimation of mortality rates, while (C, D) show districts where

mortality rates are systematically underestimated. For each district, we show the normalized value of some features of interest (black

markers) along with the average value of the same features in the neighboring districts (orange markers). The red dashed line shows the

average value for each of these normalized features centered at zero. We can see evidence of sociospatial factors of longevity in all four

districts. Particularly, we note a spillover of wealth measured by median income. Districts in (A) and (B) maintain lower mortality rates

while surrounded by districts with average mortality rates. Districts in (C) and (D) have a socioeconomic pull, driving the entire

neighborhood to have higher mortality rates.

https://doi.org/10.1371/journal.pone.0247795.g005
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for these neighbors are lower than their true mortality. An observer in Wan Chai who has

access only to the model predictions and not the true mortality data would rationally assume

that mortality in these districts is much lower than it truly is and could subsequently make fur-

ther inferences or decisions based on faulty-but-rational assumption. Notably, socioeconomic

diversity or heterogeneity of a neighborhood can change the local perception of mortality

models across neighboring communities. We observe that high divergence from the neighbor-

hood is associated with higher rates of uncertainty in the models. We envision future work

incorporating this sort of information to fine tune mortality models.

5 Conclusion

Data-driven models are powerful tools often used to inform and reshape cultural, political,

and financial policies around the globe. However, data scarcity and data sparsity pose an enor-

mous challenge for some domains such as mortality modeling, especially for small territories.

In this work, we studied the implications of that on the development of mortality models in

Hong Kong with restricted access to publicly available data sources. We carried out a set of

experiments to identify and explore how nonlocal and sociospatial interactions can systemi-

cally influence the outcome of a mortality model.

Our results support our hypothesis that spatial associations of wealth or social deprivation

among neighborhoods have a direct and sometimes substantial impact on mortality risks. Our

Fig 6. Ego networks of each district demonstrating sociospatial factors of mortality for the 2016 weighted spatial model. We display ego networks of each

district in Hong Kong and its nearest neighbors in the road and bridge network. The central node (highlighted with a grey box) of each network corresponds to the

labelled district. Neighbors are not arranged around the ego district geographically. Node color corresponds to normalized mortality rate and edge color

corresponds to signed prediction error for the 2016 WSP model. These ego networks encode a qualitative measure of the sociospatial factors in mortality modeling.

We display the equivalent networks for the Baseline and SP models in S10 and S11 Figs in S1 File respectively.

https://doi.org/10.1371/journal.pone.0247795.g006
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examination reveals that localized models—which do not account for sociospatial factors—can

systematically over- or under-estimate mortality rate—while spatial models reduce the error of

predicting mortality rate. In our investigation, we show how our models scale differently

regarding their complexity and statistical inference. We illustrate how the local perception of

predicted mortality varies qualitatively and substantially as a function of the spatial unit.

Future work can also improve upon our exploratory method to study spatial interdependency

of social and economic factors of longevity, and identify sociospatial spillovers across neigh-

bourhoods and communities.

We acknowledge our findings are limited for a few reasons. We only have access to census

data for three individual years spanning a decade and a half. A better explanation of the nonlo-

calized effect of neighborhoods could be achieved by testing our hypotheses on additional

years, along with more socioeconomic features to enrich our design tensor.

We used variational inference to estimate the posteriors analytically because of its effective-

ness and versatility. Although our decision of using variational Bayes is substantive, future stud-

ies can further explore and examine the costs and benefits for accurate estimation of posteriors

using variational inference compared with other classical Bayesian methods. Varying the model

parameters temporally ensures a modular design, as access to richer and longitudinal sociotech-

nical data features continues to evolve. However, our evaluation suggests that using fixed

parameters over time can reduce the number of tuneable parameters in the models substantially

to overcome the challenge of high bias-variance tradeoff of the spatially rich and larger models.

Our geospatial resolution is unfortunately not high enough to identify some dynamics of

connected communities. Our method, however, can be implemented similarly regardless of

the spatial unit used for the experiment. Our spatial network is mainly based on the road net-

work of Hong Kong, which could be extended to account for roads/bridges and public trans-

port across any desired spatial unit.

Finally, we have only explored a distance-based weighting scheme for the connections

across districts in the network. Population density could be included to enrich the socioeco-

nomic effect of neighboring regions on a node within the network (for example, theory of

intervening opportunities [67]). Other attributes such as geographic information associated

with community health services could help us assess their value and reallocate these centers to

more optimized locations.
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