
Multi-Exit Kolmogorov–Arnold Networks: enhancing accuracy and
parsimony

James Bagrow1,2,* and Josh Bongard3,2

1Mathematics & Statistics, University of Vermont, Burlington, VT, United States
2Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States
3Computer Science, University of Vermont, Burlington, VT, United States
*Corresponding author. Email: james.bagrow@uvm.edu, Homepage: bagrow.com

June 4, 2025

Kolmogorov–Arnold Networks (KANs) uniquely combine high
accuracy with interpretability, making them valuable for scientific
modeling. However, it is unclear a priori how deep a network
needs to be for any given task, and deeper KANs can be difficult to
optimize and interpret. Here we introduce multi-exit KANs, where
each layer includes its own prediction branch, enabling the network
to make accurate predictions at multiple depths simultaneously.
This architecture provides deep supervision that improves training
while discovering the right level of model complexity for each
task. Multi-exit KANs consistently outperform standard, single-
exit versions on synthetic functions, dynamical systems, and
real-world datasets. Remarkably, the best predictions often come
from earlier, simpler exits, revealing that these networks naturally
identify smaller, more parsimonious and interpretable models
without sacrificing accuracy. To automate this discovery, we
develop a differentiable “learning to exit” algorithm that balances
contributions from exits during training. Our approach offers
scientists a practical way to achieve both high performance and
interpretability, addressing a fundamental challenge in machine
learning for scientific discovery.

Keywords— multi-exit and early-exit neural networks, scien-
tific machine learning, interpretability and explainability, deep
supervision, data-driven models, dynamical systems

1 Introduction
Machine learning has become indispensable for scientific dis-
covery, enabling researchers to uncover complex patterns in
data that traditional analytical methods cannot readily cap-
ture [1, 2, 3, 4]. Neural networks and related techniques excel
at nonlinear regression and data-driven modeling of dynamical
systems—fundamental challenges spanning physics, biology,
chemistry, and engineering [1, 5, 4]. From climate model-
ing [6, 7] to protein folding prediction [8], these data-driven
approaches can learn sophisticated functional relationships
directly from observations, opening new pathways to under-
standing natural phenomena where first-principles models are
unavailable or computationally intractable [9, 2, 10, 4].

Despite these advances, scientific applications face a funda-
mental challenge that is less pressing in many other machine
learning domains: the need to achieve simultaneously both high

predictive accuracy and model interpretability [2, 11]. While
many commercial applications prioritize accuracy above all
else, scientific modeling demands that researchers understand
not just what the model predicts, but how and why it makes
those predictions [2, 4]. Interpretability is essential for deter-
mining whether models capture genuine physical relationships
rather than spurious correlations, for gaining scientific insight
into the underlying phenomena, and for building the trust
necessary to guide experimental design or inform policy deci-
sions [12, 11, 13]. Unfortunately, accuracy and interpretability
are in tension: the most accurate machine learning models—
typically deep neural networks with millions or billions of
parameters—are often the least interpretable, functioning as
“black boxes” that provide little insight into the mechanisms
driving their predictions [14, 4]. This accuracy–interpretability
trade-off remains a critical bottleneck for the adoption of ma-
chine learning in scientific discovery, where understanding
the underlying relationships is often as important as making
accurate predictions [2, 4].

Kolmogorov–Arnold Networks (KANs) have recently
emerged as a promising solution to this accuracy-
interpretability dilemma, representing one of the rare neural
architectures that can achieve both high predictive performance
and meaningful interpretability [15, 16, 17]. Motivated by the
Kolmogorov–Arnold Representation Theorem, which shows
that multivariate functions can be represented as compositions
of univariate functions, KANs provide a divide-and-conquer
approach to high-dimensional problems by breaking them
down into manageable univariate components that can be
learned directly from data [15]. This enables KANs to dis-
cover and represent complex functional relationships while
maintaining the ability to visualize and interpret each learned
univariate function individually. Results have demonstrated
that KANs can achieve competitive accuracy with traditional
deep networks on regression tasks and dynamical systems
modeling while providing insights into the learned functional
forms [15, 16, 18, 19]. This combination of accuracy and inter-
pretability makes KANs well-suited for scientific applications
where understanding the underlying mathematical relationships
is as crucial as predictive performance.

1

mailto:james.bagrow@uvm.edu
http://bagrow.com

Despite these promising qualities, KANs face challenges that
can limit their effectiveness in scientific applications. Training
KANs presents optimization difficulties, as the learnable uni-
variate functions must be carefully parameterized and refined,
with deeper networks often proving particularly challenging to
optimize [15]. The architecture search problem—determining
the appropriate number of layers and widths—–also remains
significant, as practitioners must balance expressiveness against
parsimony while avoiding overfitting [20]. Seeking smaller,
more parsimonious models without sacrificing accuracy is
crucial because overly deep KANs lose interpretability as
compositions of many univariate functions become difficult to
understand, while smaller KANs better retain the interpretabil-
ity that makes them valuable for scientific modeling [15]. These
challenges suggest that architectural innovations are needed to
better realize KANs’ potential for scientific discovery.

In this paper, we introduce multi-exit architectures [21, 22]
into KANs as a novel approach to address these challenges
while preserving KANs’ interpretability advantages. Multi-
exit networks, originally developed for deep networks to en-
able adaptive inference and computational efficiency, augment
networks with additional prediction branches at intermedi-
ate layers, allowing models to make predictions at multiple
depths [22, 23, 24]. When applied to KANs, this approach
offers a novel way to tackle the architecture search challenge
by enabling a single network to effectively explore multiple
levels of complexity simultaneously [24]. Multi-exit KANs
can help identify appropriate levels of model complexity for a
given task: if early exits perform well, the network has found
a parsimonious and more interpretable model that maintains
accuracy, while deeper exits remain available when additional
expressiveness is needed (Fig. 1). Furthermore, the multi-
exit approach enables deep supervision [25] during training,
where gradients flow directly to earlier layers through the exit
branches, potentially improving the optimization of deeper
KANs.

Experiments demonstrate the effectiveness of multi-exit
KANs across diverse scientific modeling tasks, showing con-
sistent improvements in both accuracy and parsimony com-
pared to traditional single-exit KANs. Our key contributions
include: (1) the first application of multi-exit architectures to
KANs, with a joint training framework that enables deep su-
pervision; (2) empirical validation across regression problems,
dynamical systems modeling, continual learning scenarios, and
real-world datasets; (3) evidence that multi-exit KANs often
achieve better performance at earlier exits, indicating more
parsimonious models without sacrificing accuracy; and (4) a
“learning to exit” algorithm that addresses the choice of extra
hyperparameters when using multi-exits. Additionally, we pro-
vide insights into why multi-exit architectures are particularly
well-suited for KANs and discuss the mechanisms underlying
their improved performance. These results suggest that multi-
exit architectures represent a valuable enhancement to KANs
for scientific applications, offering a principled approach to
balancing accuracy and interpretability.

The rest of this paper is organized as follows. Section 2
provides background on Kolmogorov–Arnold networks and

multi-exit and early-exit neural architectures. Section 3 de-
scribes our approach for incorporating multiple exits into the
KAN architecture. Section 4 presents results comparing single-
exit and multi-exit KANs across multiple domains. Section 5
introduces the learning to exit method. Finally, we conclude in
Sec 6 by discussing the implications of our findings, including
why multi-exit architectures improve KAN performance, and
directions for future work.

2 Background
We consider the problems of learning unknown functions from
data: nonlinear regression,

y = 𝐹 (x) (1)

for y ∈ R𝑛×𝑚 and x ∈ R𝑛×𝑑 , and data-driven modeling of
continuous or discrete dynamical systems of the form

𝑑x
𝑑𝑡

= F(x) (2)

or
x𝑛+1 = F(x𝑛), (3)

respectively, and subject to problem-relevant initial and/or
boundary conditions. KANs have proven effective for both
problems [15, 19, 18].

2.1 Kolmogorov–Arnold networks
A KAN network is a multilayer feedforward neural network
but unlike a traditional multilayer perceptron (MLP), the non-
linearities come from learnable, univariate activation functions
(Fig. 1) associated with the connections between layers, and
fixed summations (or multiplications) propagate signals be-
tween layers. In contrast, MLPs use fixed nonlinear activation
functions on the units and learnable weights for summations
associated with the connections between layers.

MLPs are motivated by the universal approximation the-
orem [26] while KANs are motivated by the KART, or
Kolmogorov–Arnold Representation Theorem [27, 28, 29]:
every multivariate continuous function on a finite domain can
be expressed as a finite superposition of univariate continuous
functions. More specifically, for 𝐹 : [0, 1]𝑑 → R,

𝐹 (x) = 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑑) =
2𝑑+1∑︁
𝑞=1

Φ𝑞
©«
𝑑∑︁
𝑝=1

𝜙𝑞,𝑝 (𝑥𝑝)ª®¬ , (4)

where 𝜙𝑞,𝑝 : [0, 1] → R and Φ𝑞 : R → R. The KART
shows that it is possible to represent any continuous function
of multiple variables as a composition of one-dimensional
functions. The innovation of KANs is to operationalize this
by learning the univariate “activation” functions and stacking
them in deep layers. As shown by Liu et al. [15], the stacking,
which extends beyond the KART, often allows for smooth and
interpretable activation functions which are not expected in
the two-layer KART form given by Eq. (4).

2

Exit 2

Single-exit KAN Multi-exit KAN

Exit

2 1 0 1 2
True

2

1

0

1

2

Pr
ed

ic
te

d

RMSE = 0.1013

Single-exit

2 1 0 1 2
True

Pr
ed

ic
te

d

RMSE = 0.0081

Exit 0

2 1 0 1 2
True

Pr
ed

ic
te

d

RMSE = 0.0070

Exit 1

2 1 0 1 2
True

Pr
ed

ic
te

d
RMSE = 0.0126

Exit 2

Figure 1: Enhancing accuracy and interpretability of Kolmogorov–Arnold networks (KANs) with multiple exits, here illustrated on the toy
problem 𝑦 = sin (𝑥1) + cos (𝑥2).

In a KAN, the activation functions are typically parameter-
ized using B-splines, local polynomial approximations of the
one-dimensional functions. Although many other function-
fitting techniques have been considered, including radial basis
functions [30], Fourier series [31], sinusoidal functions [32],
Chebyshev polynomials [33], and wavelet-based representa-
tions [34], all of which have many advantages, particularly in
terms of computational efficiency, for our purposes here we
focus on the original B-spline approach.

Specifically, each activation function 𝜙(𝑥) is parameterized
as a combination of a base function and a B-spline component:

𝜙(𝑥) = 𝑏(𝑥) +
∑︁
𝑗

𝑐 𝑗𝐵 𝑗 (𝑥) (5)

where 𝑏(𝑥) is the base function, 𝑐 𝑗 are the learnable coefficients,
and 𝐵 𝑗 (𝑥) are the B-spline basis functions. The base function
serves as a residual connection similar to those in ResNets [25],
facilitating gradient flow during training while allowing the
B-spline component to learn nonlinear deviations. Common
choices for the base function include the identity function
𝑏(𝑥) = 𝑥, the SiLU function 𝑏(𝑥) = 𝑥/(1 + 𝑒−𝑥), or the zero
function 𝑏(𝑥) = 0 when residual connections are omitted.
Additionally, this formulation helps maintain the effectiveness
of low-order B-splines even in deep networks by preventing
their nested composition from creating numerically unstable
high-order polynomials.

To form a deep network by stacking layers of learned acti-
vation functions, summation units (and, optionally, multipli-
cation [16]) aggregate the outputs from the previous layer’s

3

activation functions. The number of units across 𝐿 layers is
[𝑑 = 𝑁0, 𝑁1, . . . , 𝑁𝐿 = 𝑚]. The shape of the KAN is the
vector of widths [𝑁0, 𝑁1, . . . , 𝑁𝐿]. (See Fig. 1 for an example
of a KAN network with shape [2, 3, 2, 1].) Between layers 𝑖
and 𝑖 +1 there are 𝑁𝑖𝑁𝑖+1 activation functions. Following [15],
𝜙ℓ, 𝑗,𝑖 (𝑥) denotes the activation function connecting unit 𝑖 in
layer ℓ to unit 𝑗 in layer ℓ + 1 (ℓ = 0, . . . , 𝐿 − 1; 𝑖 = 1, . . . , 𝑁ℓ ;
𝑗 = 1, . . . , 𝑁ℓ+1). The summation units then combine the acti-
vation functions to propagate information through the network:
for the signal 𝑥ℓ+1, 𝑗 into unit 𝑗 in layer ℓ + 1, giving

𝑥ℓ+1, 𝑗 =

𝑁ℓ∑︁
𝑖=1

𝜙ℓ, 𝑗,𝑖 (𝑥ℓ,𝑖), 𝑗 = 1, . . . , 𝑛ℓ+1, (6)

or, in matrix (broadcast) form, xℓ+1 = Φℓ (xℓ), where Φℓ is
the functional matrix containing the 𝜙’s connecting layer ℓ and
ℓ + 1. Finally, the full network is represented by composing
each Φ in sequence,

KAN(x) = (Φ𝐿−1 ◦Φ𝐿−2 ◦ · · · ◦Φ1 ◦Φ0) (x) . (7)

It is this combination of superpositions of learned activation
functions and layer-wise composition that gives KANs both
their expressiveness and makes them distinct from MLPs.
Beyond this architectural difference, KANs are considered
more interpretable than MLPs because each activation function
𝜙 can be individually examined, as shown in Fig. 1.

KANs are trained with a loss function L = Ldata + 𝜆Lreg
comprising a data loss and a regularization loss, with the
hyperparameter 𝜆 determining regularization strength. Usually
the data loss is mean squared error (MSE):

Ldata =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 , (8)

where 𝑦𝑖 is the true value for observation 𝑖 and �̂�𝑖 is the KAN’s
prediction for that observation, while the regularization loss
is a combination of an L1 norm and an entropy both defined
on the activation functions (for details, see Liu et al. [15]).
Activation function parameters are learned via gradient-based
optimization to minimize L on training data. Training com-
monly includes a refinement process where the resolution
of the B-spline grids is increased; gradually increasing grid
resolution during training has been shown to improve KAN
accuracy better than using a finer grid from the start [15].
KANs are typically optimized with quasi-Newton methods,
particularly L-BFGS [35], also employed in this work, though
first-order methods such as SGD or Adam [36] can be used as
well.

2.2 Multi-exit and early exit networks

Multi-exit networks are a deep learning architecture where
some or all hidden layers in the network have an additional
branch point called an exit [21, 22, 23]. These exits are small
subnetworks, often only a single layer, whose output can be
used alongside or instead of the main trunk network’s output.

The most common application is for deep classifiers [21, 22,
37, 38], often for computer vision or language models. In
a classification task, the network is typically given inputs
of varying difficulties, For easy inputs, i.e., those far from
the decision boundary, the network may be able to classify
accurately using only basic features built by the earlier layers.
But for difficult inputs, the network may need to utilize all
the layers to build more complex features in order to make
a successful classification [21]. By equipping the network
with multiple exits, an easy input can reduce inference-time
compute by using the output of an early exit only, saving both
time and energy when making predictions [24]. The promise
of efficiency gains motivates the study of early exit networks
and learning to exit algorithms. This approach goes by various
names in the literature, including deeply supervised networks,
cascaded learning, conditional deep learning, and adaptive
inference. For more on multi-exit and early-exit networks, see
Scardapane et al. [24], Laskaridis et al. [39] or Rahmath et
al. [40].

While multi-exits offer energy-efficient and fast inference,
for our purposes, they provide a more important benefit: they
allow deep supervision [21] of the network during training.
By introducing a loss function that combines the outputs of all
exits, training gradients enter directly into the earlier hidden
layers. With appropriate losses, this can allow for a network
that is trained more accurately or more efficiently, or both [24].

We argue in this paper that multi-exits are a natural extension
of KANs and, unlike alternative forms of deep supervision such
as DenseNet-style forward connections [41] (see Discussion),
this form of deep supervision is especially appropriate to the
interpretability advantages of KANs.

3 Adding exits to KANs

A multi-exit KAN augments a standard (single-exit) KAN
of shape [𝑑 = 𝑁0, 𝑁1, . . . , 𝑁𝐿 = 𝑚] with additional exits as
follows. For each layer ℓ of the KAN, beginning from the input
and continuing until the second-to-last hidden layer1, add an
exit layer, another KAN network, with shape [𝑁ℓ , 𝑚]. The
𝑚-dimensional output of these exits can then be used to predict
the same output as the main trunk exit. We illustrate a multi-
exit KAN alongside the corresponding single-exit version in
Fig. 1.

To train a multi-exit KAN requires a data loss and a regu-
larization loss. The regularization loss can remain the same
as in standard KANs, but applied to all activation functions
across the network including those in the exits. The data
loss, on the other hand, must now accommodate multiple
predictions. A multi-exit KAN with 𝐾 exits will now emit
𝐾 outputs, denoted �̂� (0) , �̂� (1) , . . . , �̂� (𝐾−1) , where �̂� (0) is the
output of the exit connected directly to the KAN input layer and
�̂� (𝐾−1) is the output of the main trunk. To train the entire KAN
across all exits, enabling deep supervision [21] of all layers,
requires a joint loss function that combines all these outputs. A

1The last hidden layer already has an exit, the main trunk output.

4

straightforward option that we focus on is a weighted average
of the individual exit data losses:

Lmulti =

𝐾−1∑︁
𝑘=0

𝑤𝑘L𝑘 , (9)

where L𝑘 =
∑
𝑖

(
𝑦𝑖 − �̂� (𝑘)𝑖

)2
/𝑛 is the MSE for exit 𝑘 and 𝑤𝑘

is the weight for exit 𝑘 . The exit weights satisfy
∑
𝑘 𝑤𝑘 = 1.

These weights become a hyperparameter to be tuned by the
researcher using validation data and this tuning process in
practice has been straightforward. Equation (9) is quite flexible
as the exit weights allow us to prioritize certain exits by
weighting them more heavily than others, and individual exits
can even be disabled by zeroing their weights. However, for
a network with many exits, these 𝐾 − 1 degrees of freedom
become a large search space. Therefore, after our main results,
in Sec. 5 we propose and apply a “learning to exit” method to
automatically learn 𝑤 alongside the KAN parameters.

Number of parameters How many more parameters are
added to a KAN by adding exits? The number of parameters in
a KAN depends on its architecture, which dictates the number
of activation functions, and the number of parameters per
activation function. The parameters per activation function
depends on the number and order of the spline bases (Eq. (5)),
assuming B-splines are used to model the activation functions.
This is the same for activation functions in the main trunk
and in the exits, so we only need to consider the number of
activation functions to determine the overhead added to a KAN
by adding exits.

The number of activation functions between layers in a
standard KAN is the product of the layer widths, so a KAN
with shape [𝑑 = 𝑁0, 𝑁1, . . . , 𝑁𝐿 = 𝑚] will have

𝑁act = 𝑑𝑁1 + 𝑁1𝑁2 + · · · + 𝑁𝐿−1𝑚 (10)

activation functions. A multi-exit KAN of the same shape will
have those activation functions plus an additional 𝑚 activation
functions for each additional exit:

𝑁act = 𝑑𝑁1 + 𝑁1𝑁2 + · · · + 𝑁𝐿−2𝑁𝐿−1

+ (𝑑 + 𝑁1 + · · · + 𝑁𝐿−1) 𝑚.
(11)

Notice that the sum of layer widths will be smaller than the
sum of products of adjacent layer widths, (unless the layers are
all one unit), so, unless 𝑚 is large, the main trunk dominates
the number of parameters in the KAN. Indeed, for the case of
uniform layer width, 𝑁ℓ = 𝑑 for all ℓ, the main trunk will have
(𝐿−1)𝑑2+𝑑𝑚 activation functions, including the original exit,
and the newly added exits will introduce (𝐿 − 1)𝑑𝑚 activation
functions in total. In this case, the new exits will contribute
fewer activation functions than the main branch when 𝑚 < 𝑑,
typical of regression problems (Eq (1)) and a nearly equal
number (fewer by 𝑑𝑚) of activation functions when 𝑚 = 𝑑,
typical of dynamical systems modeling (Eqs. (2) or (3)).

Also, note that no one prediction made by the model will
use all the activation functions, even if they were all used

during training. Thus, multi-exits provide their benefits with
reasonable, often modest, parameter overhead.

4 Results
Experiments compare single-exit and multi-exit KANs on
various regression tasks of known functional forms (Sec. 4.1;
Figs. 2 and 3; Table 1), on multi-step forecasting of dynamical
systems (Sec. 4.2; Figs. 4 and 5), on a model of continual
learning (Sec. 4.3, Fig. 6), and on three real-world datasets
((Sec. 4.4, Table 2). For each task, a manual architecture search
identifies good KAN shapes and exit weights, while holding all
other hyperparameters fixed. Performance is assessed with the
root mean squared error (RMSE) of its predictions on test data
(as well as 𝑅2 values for the real-world data). Regarding the
exit weights, Sec. 5 explores learning the weights automatically
with a “learning to exit” approach.

4.1 Regression tasks
Our first experiment uses the sinc function,

𝑓 (𝑥) = sin (𝜋𝑥)
𝜋𝑥

. (12)

This one-dimensional function works well as a test because it
features both local oscillations and global decay, and approxi-
mation methods often struggle due to its sharp spectral cutoffs,
making it a simple but challenging benchmark for function
approximation.

For the sinc function a KAN of shape [1, 2, 2, 2, 1] per-
formed well. See Appendix A for full details on training
settings and hyperparameters and data generation. This KAN
may seem deep for such a function. KANs can support multi-
plication units [16], although they are not strictly necessary due
to the KART, so we decided to forgo them for simplicity and
therefore expected a deeper KAN to perform better for this task,
hence the aforementioned shape. Parameterizing the multi-exit
weighted loss with a simple linear ramp, 𝑤 = [1, 2, 3, 4] (un-
normalized) worked well: performance on test data was good,
with the final exit showing an order of magnitude lower error
than the equivalent single-exit network (Fig. 2). In fact, three
of the four exits, all but Exit 0, outperformed the single-exit net-
work, indicating robust and parsimonious (parameter-efficient)
capture of the data.

Next was the function

𝑓 (𝑥1, 𝑥2) = sin
(
2𝜋𝑥2

1

)
sin

(
4𝜋𝑥2

2

)
. (13)

This nonlinear function tests multivariate approximation
through spatially-varying frequencies that challenge learn-
ing. Models used a KAN shape of [2, 3, 2, 1] and, for the
multi-exit KAN, exit weights 𝑤 = [1, 2, 1]. As shown in
Fig. 3, we found good results for the single-exit KAN but even
better for the multi-exit KAN.

In the multi-exit KAN, unsurprisingly, the initial exit, which
lacks any composability, is unable to represent this function.

5

0.0

0.5

1.0
y

Single-exit Multi-exit

10 0 10
x

0.10

0.05

0.00

0.05

0.10

Er
ro

r

RMSE = 0.0154

10 0 10
x

RMSE = 0.00145

Figure 2: Multi-exits reduce error in 1D nonlinear regression.

The next exit, however, does well, achieving error one fourth
that of the larger, single-exit model (RMSE = 0.0045 vs.
0.0232). The final exit at RMSE = 0.007 also outperforms
the same-size single-exit model. This result demonstrates that
multi-exit KANs can identify the right level of complexity,
with the middle exit outperforming both simpler and more
complex alternatives.

Our final regression experiment uses a sample of equations
from the Feynman Equation dataset, a standard function approx-
imation benchmark [42, 43]. These equations cover a range
of functional forms and complexity levels, while representing
practically relevant physical relationships.

Each equation was converted to the dimensionless form
indicated in the table and used to generate data (see Ap-
pendix A). KANs with shape [𝑑, 5, 5, 5, 5, 1]) were fitted to
each dataset. The multi-exit KAN found good results with
𝑤 = [0, 0, 1, 1, 3/2] (only Exits 2–4 are active) on Eq. I.27.6,
and we proceeded to use this 𝑤 across all equations. For each
multi-exit KAN, Table 1 reports the smallest RMSE across its
exits.

As shown in Table 1, multi-exit networks achieved lower
test RMSE than the single-exit model in nine of ten cases.
Interestingly, and in line with our observations from the 2D
regression shown in Fig. 3, for half of the problems, the best
performing exit is not the final exit, indicating we find more
parsimonious (smaller) models with multi-exits that are also
more accurate than larger, single-exit models.

4.2 Data-driven modeling of dynamical systems

Beyond regression problems, experiments study how multi-exit
architectures perform as models of dynamical systems, which
present challenging time-series forecasting problems due to
their chaotic attractors, evaluating both one-step and multi-step
(closed-loop) prediction tasks.

Two dynamical systems are considered. The first is the Ikeda
map [44, 45], a famous example of a practically motivated

discrete-time chaotic dynamical system that does not admit an
accurate sparse representation:

𝑥𝑛+1 = 1 + 𝜇 (𝑥𝑛 cos (𝜙𝑛) − 𝑦𝑛 sin (𝜙𝑛)) ,
𝑦𝑛+1 = 𝜇 (𝑥𝑛 sin(𝜙𝑛) + 𝑦𝑛 cos(𝜙𝑛)) ,

(14)

where 𝜙𝑛 = 0.4 − 6
(
1 + 𝑥2

𝑛 + 𝑦2
𝑛

)−1 and bifurcation parameter
𝜇 = 0.9. KANs, unlike sparse regression methods, have been
show to model the Ikeda map well [19].

KANs found good results modeling the Ikeda map with a
[2, 4, 4, 4, 2] shape and, for the multi-exit KAN, exit weights
𝑤 = [0, 0, 1, 2] (the first two exits were disabled). (Note that
Panahi et al. [19] used a fixed grid 𝐺 = 10 while we used
grid refinement (see Appendix) for both single- and multi-
exit KANs.) For one-step prediction the multi-exit KAN
achieved RMSE = 4.560 × 10−3 compared to the single-exit’s
5.484 × 10−3, an improvement of 16.8%. For multi-step
prediction, as shown in Fig. 4 the multi-exit KAN tracks the
dynamics for approximately twice as many timesteps as the
single-exit KAN before inevitably diverging due to chaos.

The second dynamical system we consider is a continuous-
time model of a three-population ecosystem:

𝑑𝑁

𝑑𝑡
= 𝑁

(
1 − 𝑁

𝐾

)
− 𝑥𝑝𝑦𝑝

𝑁𝑃

𝑁 + 𝑁0
,

𝑑𝑃

𝑑𝑡
= 𝑥𝑝𝑃

(
𝑦𝑝

𝑁

𝑁 + 𝑁0
− 1

)
− 𝑥𝑞𝑦𝑞

𝑃𝑄

𝑃 + 𝑃0
,

𝑑𝑄

𝑑𝑡
= 𝑥𝑞𝑄

(
𝑦𝑞

𝑃

𝑃 + 𝑃0
− 1

)
,

(15)

where 𝑁 , 𝑃, and 𝑄 are the primary producer, herbivore, and
carnivore populations, respectively, and the carrying capacity
𝐾 acts as bifurcation parameter. To model a chaotic system, we
set 𝐾 = 0.98, 𝑥𝑝 = 0.4, 𝑦𝑝 = 2.009, 𝑥𝑞 = 0.08, 𝑦𝑞 = 2.876,
𝑁0 = 0.16129, and 𝑃0 = 0.5, ensuring the system exhibits
a chaotic attractor [46]. As with the Ikeda map, KANs are
known to model this system well [19].

KANs performed well modeling the ecosystem with shape
[3, 3, 3, 3] KANs and 𝑤 = [2, 1, 1/2] for the multi-exit KAN,
achieving very good multi-step prediction (Fig. 5) but slightly
worse one-step prediction (RMSE = 3.774×10−4 for the multi-
exit compared to 3.171 × 10−4 for the single-exit KAN). The
single-exit KAN, while still performing well, appears to be
overfit to the local trajectory while the multi-exit KAN better
captured the underlying attractor structure.

4.3 Continual learning

As a further demonstration of the usefulness of augmenting
KANs with multi-exits, we consider a toy model of continual
learning [15, 47] (Fig. 6, top row). Here the function to
represent is a one-dimensional line of five peaks, a multi-
modal mixture of Gaussian functions:

𝑓 (𝑥) =
5∑︁
𝑖=1

exp
(
−300(𝑥 − 𝑐𝑖)2

)
, (16)

6

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0
x 2

a
Single-exit

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

b
Exit 0

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

c
Exit 1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

d
Exit 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

e

RMSE = 0.0232

Single-exit error

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2
f

RMSE = 0.3993

Exit 0 error

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

g

RMSE = 0.0045

Exit 1 error

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

h

RMSE = 0.0071

Exit 2 error

-0.88

-0.66

-0.44

-0.22

0.00

0.22

0.44

0.66

0.88

-0.28

-0.22

-0.17

-0.11

-0.05

0.00

0.05

0.11

0.16

-0.35

-0.26

-0.18

-0.09

0.00

0.09

0.18

0.26

0.35

0.44

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

-0.88

-0.66

-0.44

-0.22

0.00

0.22

0.44

0.66

0.88

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

-0.90

-0.68

-0.45

-0.23

0.00

0.22

0.45

0.68

0.90

-0.06
-0.05
-0.04
-0.02
-0.01
0.00
0.01
0.02
0.04
0.05

Figure 3: Multi-exits reduce error in 2D nonlinear regression.

Feynman Eq. Original Formula Dimensionless formula # vars RMSE (single) RMSE (multi) (Exit)

I.6.20 𝑒
− 𝜃2

2𝜎2
√

2𝜋𝜎2
𝑒
− 𝜃2

2𝜎2
√

2𝜋𝜎2
2 1.90 × 10−4 1.03 × 10−5 (3)

I.6.20b 𝑒
− (𝜃−𝜃1)2

2𝜎2
√

2𝜋𝜎2
𝑒
− (𝜃−𝜃1)2

2𝜎2
√

2𝜋𝜎2
3 1.12 × 10−3 1.16 × 10−3 (2)

I.9.18 𝐺𝑚1𝑚2
(𝑥2−𝑥1)2+(𝑦2−𝑦1)2+(𝑧2−𝑧1)2

𝑎

(𝑏−1)2+(𝑐−𝑑)2+(𝑒− 𝑓)2 6 5.03 × 10−2 2.09 × 10−2 (3)

I.12.11 𝑞
(
𝐸 𝑓 + 𝐵𝑣 sin 𝜃

)
1 + 𝑎 sin 𝜃 2 4.94 2.41 × 10−2 (4)

I.13.12 𝐺𝑚1𝑚2 (1/𝑟2 − 1/𝑟1) 𝑎 (1/𝑏 − 1) 2 1.55 × 10−1 1.31 × 10−2 (4)
I.15.3x 𝑥−𝑢𝑡√︃

1− 𝑢2
𝑐2

1−𝑎√
1−𝑏2

2 1.32 × 10−2 2.86 × 10−3 (2)

I.16.6 𝑢+𝑣
1+ 𝑢𝑣

𝑐2

𝑎+𝑏
1+𝑎𝑏 2 2.05 × 10−3 3.04 × 10−4 (2)

I.18.4 𝑚1𝑟1+𝑚2𝑟2
𝑚1+𝑚2

1+𝑎𝑏
1+𝑎 2 2.53 × 10−4 1.90 × 10−4 (4)

I.26.2 asin (𝑛 sin 𝜃2) asin (𝑛 sin 𝜃2) 2 1.22 × 10−3 7.62 × 10−4 (4)
I.27.6 1

𝑛/𝑑2+1/𝑑1
1

1+𝑎𝑏 2 1.77 × 10−5 1.54 × 10−5 (4)

Table 1: Performance on Feynman Equation dataset.

where the centers 𝑐𝑖 of peaks 𝑖 were evenly spaced. For this
experiment, we generated 100 equally spaced points around
each peak, for a total of 500 samples. KANs can easily fit such
data but there is a wrinkle: the model is not trained on all the
data at once. Instead, it sees the data in phases, one peak at a
time (Fig. 6, top row).

The question becomes whether a KAN can learn a new
peak without losing its representation of previous peaks. As
argued by Liu et al. [15], shallow KANs are well adapted to
this task due to the local nature of their spline-based activation
functions: updating one region of a spline will not affect the
fit of other regions, enabling the KAN to retain the form of
a previous peak when incorporating the next peak. However,
they also note that KANs lose this ability as they get deeper,
since the composition of splines across multiple layers reduces
their locality, opening the door for catastrophic forgetting.
Do multi-exit KANs with their deep supervision retain more
locality and exhibit less forgetting?

As seen in Fig. 6, we can answer in the affirmative. While
both architectures display some forgetting, with previously
learned peaks changing with subsequent data, the effect is
worse for the single-exit KAN (shape [1, 5, 5, 1]), especially
when learning the second peak. Compared to the single-exit
KAN of the same architecture (Fig 6, middle row), the multi-
exit KAN (bottom row) with exit weights 𝑤 = [1, 1, 2e3] better
tracks the underlying function across training phases, and when
finished displays less than half the error of the single-exit KAN
(RMSE = 0.086 vs. 0.19).

4.4 Real-world data
Now we consider how multi-exit KANs perform on three
real-world datasets:

• Airfoil Noise. Predict the self-noise (scaled sound pres-
sure, in dB) of a NACA 0012 airfoil for different angles

7

0 1
x

2

1

0

1
y

a Single-exit

0 1
x

2

1

0

1

y

c Multi-exit

0

1

x

b Single-exit

0 20 40
n

1

0

y

0

1

x
d Multi-exit

0 20 40
n

1

0

y

Figure 4: Multi-step prediction of the Ikeda map (Eq. (14). The
multi-exit KAN tracks the dynamics well for about twice as many
steps into the future (shaded regions) as the single-exit KAN. (Blue:
ground truth; orange: KAN prediction.)

of attack, free stream velocity, and other features. Data
originated from anechoic wind tunnel experiments [48].

• Power Plant Energy. Predict the electrical power output
(in MW) for different ambient atmospheric conditions,
temperature, pressure, relative humidity, and the steam
turbine pressure (or vacuum). Data originated from a 480
MW combined cycle power plant with two gas turbines,
one steam turbine, and two heat recovery steam generators,
collected over a six-year period (2006-2011) [49, 50].

• Superconductor Critical Temperature. Predict critical
temperature (in K) of superconductors based on mate-
rial properties. The dataset contains many features and
statistical variants, so for ease of experimentation, we se-
lected five representative features capturing composition
complexity, electronic structure, and chemical bonding
properties: number of elements, weighted mean valence,
valence entropy, weighted mean first ionization energy,
and mean electron affinity. These data originated from
the Superconducting Material Database maintained by
Japan’s National Institute for Materials Science [51, 52].

All data were retrieved from the UCI Machine Learning
Repository [53] (accessed: 23 May 2025). From each dataset
1k observations for training and 1k for testing were randomly
sampled, except for the smaller Airfoil dataset, which con-
tains only 1503 observations in total so 750 observations for
training and 750 for testing were randomly sampled. Besides
sampling for training/testing and selecting features for the
superconductivity data, no other filtering or preprocessing was
performed.

0.2 0.4 0.6 0.8
x

0.2
0.4

y

0.6

0.8

1.0

a

z

Single-exit

0.2 0.4 0.6 0.8
x

0.2
0.4

y

0.6

0.8

1.0

c

z

Multi-exit

0.25
0.50
0.75

x

b Single-exit

0.25

0.50

y

0 500 1000
t

0.75

1.00

z

0.25
0.50
0.75

x

d Multi-exit

0.25

0.50

y

0 500 1000
t

0.75

1.00

z

Figure 5: Multi-step prediction of the ecosystem (Eq (15)). The multi-
exit KAN encodes the dynamics well, not diverging significantly until
𝑡 > 1000.

Single-exit KANs generally performed well with one hidden
layer (Table 2), but we also considered zero- and two-layer
KANs, and used the same shapes for the corresponding multi-
exit KANs (a KAN with shape [𝑑, 𝑚] can only have one exit).
Experimentation led to exit weights 𝑤 that performed well,
although for both shape and weight, there is likely room for
improvement. All other hyperparameters and training settings
(grid refinement, etc.) were unchanged, leaving even more
room to improve. For multi-exit KANs, in all cases the best
performing exit was either Exit 0 or 1.

As seen in Table 2, multi-exits improved predictive perfor-
mance on all three datasets. Interestingly, for all datasets, the
two- and three-exit KANs outperformed the single-exit KANs
of the same size and smaller, at earlier exits. For instance,
on Airfoil, the three-exit KAN achieved RMSE = 5.129 at
Exit 0, improving on the single-exit KAN of the same size
(RMSE = 5.338) by 3.9%. Multi-exit KANs achieved accurate
fits while simultaneously being more parsimonious. While
additional training of the one-layer KAN could potentially
close this gap, this result nevertheless suggests that multi-exit
KANs improve performance simultaneously across shallower
and deeper architectures.

5 Learning to exit
The exit weight hyperparameter complicates the architecture
search problem, already a potential challenge when estimating

8

0

1

2
y

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Training signal

0

1

2

y

Single-exit (RMSE = 0.186)

1.0 0.5 0.0 0.5 1.0
x

0

1

2

y

1.0 0.5 0.0 0.5 1.0
x

1.0 0.5 0.0 0.5 1.0
x

1.0 0.5 0.0 0.5 1.0
x

1.0 0.5 0.0 0.5 1.0
x

Multi-exit (RMSE = 0.086)

Figure 6: Mitigating catastrophic forgetting with multi-exits in a toy model (Eq. (16)) of continual learning.

Table 2: Performance of single- and multi-exit KANs on three datasets.

Dataset Obs. Features Shape Exit weight Single Multi

RMSE 𝑅2 RMSE 𝑅2 Exit

Airfoil 1500 5 [5, 1] — 5.338 0.421 — — —
[5, 5, 1] [1, 2e3] 5.897 0.293 5.635 0.355 1
[5, 5, 5, 1] [1e3, 100, 1] 7.130 -0.0332 5.129 0.465 0

Power plant 2000 4 [4, 1] — 4.462 0.934 — — —
[4, 4, 1] [5, 2] 4.496 0.932 4.451 0.934 0
[4, 4, 4, 1] [100, 1e3, 1] 4.601 0.929 4.406 0.935 1

Superconductivity 2000 5 (of 81) [5, 1] — 19.524 0.658 — — —
[5, 5, 1] [10, 8] 18.556 0.691 18.353 0.698 1
[5, 5, 5, 1] [1, 10, 1] 19.278 0.666 18.445 0.695 1

KAN models. Indeed, from our experiments, it is not always
obvious a priori what exit weights will best optimize the KAN.
Sometimes uniform weights work well, or an increasing or
decreasing ramp, or sometimes even a heavy weight on the last
exit(s) can be beneficial. While KANs train quite quickly on
these smaller scientific problems, allowing rapid iteration to
explore the weight simplex, nevertheless, it would be useful,
and data-efficient, to avoid this trial-and-error process. To this
end, here we introduce and apply a basic “learning to exit”
algorithm which treats the exit weights as learnable parameters,
eliminating them entirely from the architecture search.

5.1 Learnable exit weights

Consider a multi-exit KAN with 𝐿 exits producing outputs
{�̂� (0) , �̂� (1) , . . . , �̂� (𝐿−1) } for a given input. Until now multi-exit
KANs were trained using a fixed weighted loss (Eq. (9)):

Lmulti =
∑︁
𝑖

𝑤𝑖L𝑖
(
�̂� (𝑖) , 𝑦

)
, (17)

where 𝑤𝑖 (𝑖 = 0, . . . , 𝐿 − 1) are predetermined constants and
L𝑖 is the loss function for exit 𝑖. In our learning to exit
framework, we introduce exit logits 𝜽𝑤 = {𝜃0, 𝜃1, . . . , 𝜃𝐿−1}
to be optimized. A softmax transformation connects these to
Eq. 17,

𝑤𝑖 (𝜃𝑖) =
exp(𝜃𝑖)∑
𝑗 exp(𝜃 𝑗)

, (18)

guaranteeing positive, normalized exit weights. The loss
function becomes:

Ljoint (𝜽KAN, 𝜽𝑤) =
∑︁
𝑖

𝑤𝑖 (𝜃𝑖) L𝑖
(
�̂� (𝑖)

(
𝜽 (𝑖)

KAN

)
, 𝑦

)
, (19)

where 𝜽KAN represents the KAN parameters and 𝜽 (𝑖)
KAN denote

the KAN parameters for layers up to and including exit 𝑖.

5.2 Optimization procedure

The optimization problem is formulated as:

𝜽∗KAN, 𝜽
∗
𝑤 = arg min

𝜽KAN ,𝜽𝑤
Ljoint (𝜽KAN, 𝜽𝑤). (20)

9

Both sets of parameters are updated simultaneously using
gradient-based optimization. The gradients with respect to the
exit logits are

𝜕Ljoint

𝜕𝜃𝑖
=
∑︁
𝑗

L 𝑗

(
�̂� (𝑗) , 𝑦

) 𝜕𝑤 𝑗
𝜕𝜃𝑖

, (21)

where, from Eq. (18),

𝜕𝑤 𝑗

𝜕𝜃𝑖
=

{
𝑤𝑖 (1 − 𝑤𝑖) if 𝑖 = 𝑗 ,

−𝑤𝑖𝑤 𝑗 if 𝑖 ≠ 𝑗 .
(22)

As before, L-BFGS was used for the joint optimization, but
other methods, such as Adam, could be used instead. Weight
logits were initialized with uniform values (𝜽𝑤 = 0), but other
initializations may be worth exploring. All other training
settings and hyperparameters were unchanged.

5.3 Results
To evaluate the learning-to-exit model, we apply it to the three
datasets studied in Sec. 4.4, focusing on the three-exit architec-
tures. Comparing to Table 2, the results were promising. On
every dataset, the learned model outperformed the single-exit
KAN of the same shape. Further, in two of the three cases,
the new model outperformed every model in Table 2. Specifi-
cally, for Airfoil the new model achieved RMSE = 4.947 and
for Superconductivity RMSE = 18.126, beating the previous
best RMSE = 5.129 and 18.353, respectively. On the other
hand, for Power plant, it achieved RMSE = 4.558, better than
the single-exit result of RMSE = 4.601 but worse than the
multi-exit’s RMSE = 4.406.

Interestingly, the learned exit weights varied for all three
datasets, despite all being initialized to𝑤 = [1, 1, 1]/3. For Air-
foil, the final weights were, to machine precision, 𝑤 = [1, 0, 0]
(focus on first exit), for Superconductivity, 𝑤 = [0, 0, 1] (focus
on last exit), and for Power plant, 𝑤 = [0.002, 0.848, 0.150]
(mixed focus). Power’s exit logits also converged more slowly
than the other two, which may relate to the weaker relative
performance.

The dynamics of exit selection are worth further study—
for one, we expected a regularization term on the exit logits
would be necessary, but these results imply otherwise—yet
our findings already show that the learning-to-exit model has
promise.

6 Discussion
Augmenting KANs with multiple exits improves their perfor-
mance and often their parsimony. When a multi-exit KAN
performs well at an early exit, it suggests that the full network
is deeper than necessary and functions with fewer levels of
composition are sufficient to model the given data. While
in principle a deeper single-exit KAN can be encouraged to
simplify, either through regularization or through linearizing
the later activation functions—in fact, both single-exit and

multi-exit methods are likely to benefit in general from fine-
tuning hyperparameters and training settings—nevertheless
the multi-exit approach is a promising alternative to achieving
this parsimony.

What is the mechanism of action behind the success of
multi-exits? The first and more obvious mechanism is that
of deep supervision. The compositional nature of learned
activation functions makes gradient flow through many layers
a challenge during training. By connecting the loss function
directly to the earlier layers, training will allow for better
conditioning of the activation functions and weights within
those layers. In this sense, the multi-exits fulfill a role similar to
that of DenseNet [41]-style forward connections. In DenseNet
architectures, the forward connections link input and hidden
layers directly to the final output layer, and backpropagation
can then reach deeper into the network for training. (The
other common form of deep supervision, residual connections
(ResNet) [25] is already commonly used in KANs; see Eq. (5).)
In fact, forward connections in KANs could be viewed as
another useful form of deep supervision. However, they
create a large number of outputs at the final layer, which may
necessitate a more complex final functional form, hindering
KAN’s goal of interpretability. Multi-exits, in contrast, may
be a better alternative thanks to their potential for parsimony.

A second and less obvious mechanism of action is im-
plicit regularization through the optimization method. In
quasi-Newton methods such as BFGS and L-BFGS, a Hes-
sian approximation captures curvature information across all
parameters simultaneously, enabling the optimizer to find pa-
rameter configurations that balance competing objectives from
different exits. In other words, the curvature approximation
regularizes the parameters during training. In our experiments
using L-BFGS, the presence of Exit 0 only, the exit connected
directly to the input, still led to improvements in KAN per-
formance. When there are no other intermediary exits, deep
supervision can’t condition the earlier layers—Exit 0 is not
on the computational path of the last exit. Yet, through the
optimization process, the network is still able to find better
solutions. For instance, in the experiments with real world data
(Sec. 4.4), multi-exit KANs with only one hidden layer still
improved, albeit quite modestly, over single-exit KANs. Im-
plicit regularization was absent when training with first-order
methods such as SGD or Adam [36], which update parameters
based on individual gradient moments rather than capturing
the joint parameter dependencies, though such methods still
provide the benefits of deep supervision. This second mech-
anism, while weaker than deep supervision, offers another
reason why L-BFGS is well-suited for KAN optimization.

Despite the promising results presented in this work, some
limitations should be acknowledged. Perhaps the most seri-
ous concern is the extra need to set the exit weights when
fitting a multi-exit KAN. In all our experiments, setting 𝑤
required only brief coarse-grained tuning (and it is addressed
by our learning-to-exit algorithm) but in settings where data
are scarce, it may be difficult to optimize the exit weights
without overfitting. Second, we focused our comparisons on
single-exit versus multi-exit KANs to isolate the effect of the

10

architectural change, leaving broader comparisons for future
work. Likewise, future work should consider the effects of dif-
ferent hyperparameter values and training settings, including
other sources of regularization such as pruning [15], since it
is important in practice to ascertain the optimal settings for
different applications and whether multi-exits benefit from or
remain useful with such fine-tuning. Third, while multi-exit
architectures often identify more parsimonious models, the
interpretability gains are indirect—the exits themselves do not
enhance the interpretability of individual activation functions,
but rather help identify simpler network configurations. Fourth,
our learning-to-exit algorithm should be studied further and,
while effective, can surely be improved. Finally, the additional
computational overhead during training, though modest, may
become more significant for very deep networks with many
exits.

Several promising directions are worth pursuing. First, re-
ceiving multiple predictions from a KAN immediately brings
to mind the idea of ensemble learning [54]. However, ensem-
bles benefit from uncorrelated or de-correlated models, but the
different exits in a multi-exit KANs are not independent. Inves-
tigating methods to encourage heterogeneity among exits while
maintaining their collaborative training could enable ensemble
learning. This may also lead to uncertainty quantification ca-
pabilities [55, 56]—a key goal for KANs [57, 58]——through
the natural variation of predictions across exits. Second, our
learning-to-exit framework leaves room for improvement, and
incorporating ideas from differentiable architecture search [59]
more generally could benefit KANs. Third, exploring exit archi-
tectures beyond simple single-layer KAN exits may yield better
performance, although doing so without harming parsimony
may be difficult. Fourth, extending multi-exit architectures
from B-splines to other KAN variants (Fourier-KANs, Wavelet-
KANs, Physics-Informed KANs, etc.) could reveal whether
the benefits generalize across different basis functions. Finally,
applying multi-exit KANs to larger-scale scientific problems,
particularly in domains like climate modeling or molecular
dynamics where both accuracy and interpretability are crucial,
would provide valuable insights into their practical utility.

Conclusion We have introduced multi-exit architectures for
Kolmogorov–Arnold Networks, demonstrating that augment-
ing KANs with additional outputs consistently improves their
performance across diverse scientific modeling tasks. Our
experiments revealed that multi-exit KANs often achieve their
best performance at earlier exits, indicating that they success-
fully identify more parsimonious models without sacrificing—
and often improving—accuracy. While multi-exit architectures
introduce additional hyperparameters, our results show the
benefits substantially outweigh this added complexity. This
finding is particularly valuable for scientific applications where
interpretability is paramount, as simpler models with fewer
compositional layers are inherently more interpretable. These
results suggest that multi-exit architectures represent a natural
and effective enhancement to KANs, offering researchers a
principled approach to finding the right balance between model
complexity and performance.

A Materials and Methods

Implementation and training KANs were implemented
with the PyKAN library v0.2.8 (https://github.com/
KindXiaoming/pykan), based on PyTorch v2.6.0 [60]. To
fit KAN models using training data, the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [35]
was used with history size 10, strong Wolfe conditions for
line search, and convergence tolerances of 10−32 for gradient
norm, parameter changes, and curvature conditions. Unless
otherwise noted, fitting employed a progressive grid refine-
ment strategy, iteratively refining the spline basis functions
through a sequence of increasing grid sizes 𝐺 = 3, 5, 10, 20,
with 30 optimization steps performed at each grid resolution.
This approach allows the model to first capture coarse-grained
patterns before learning finer details, leading to more stable
convergence and better generalization performance [15]. All
other training settings and hyperparameters were kept at the
default values of PyKAN, including the learning rate of 1.0
and the default spline order 𝐾 = 3 and grid update schedule.
Multiplication units were not used. The same training pro-
cedure and settings was used throughout, for both single-exit
and multi-exit KANs. Fine-tuning these settings would likely
further improve performance, but both types of KANs would
be expected to benefit. Our source code will be available at
https://github.com/bagrow/multi-exit-KAN upon acceptance
of this manuscript.

Experimental details For the 1D and 2D regression tasks,
𝑛 = 1000 training and 𝑛 = 1000 testing points were generated,
with x ∼ 𝑈

(
[𝑥min, 𝑥max]𝑑

)
and 𝑦 generated from x, without

additional noise, according to the given equation. For the fits
illustrated in Fig. 1, 𝑛 = 1000 training points and 𝑛 = 200
testing points were used, as well as a single 𝐺 = 5 grid, 30
optimization steps, KAN shape [2, 3, 2, 1] and 𝑤 = [1, 1, 1].
The Feynman Equations dataset used the same data generating
process as the 1D and 2D regression tasks, but each exogenous
variable’s range was given by the range of values in the
released AI Feynman dataset [42]. For the dynamical systems
experiments, data for each system was generated and split
into training and testing folds following the procedure and
parameters of Panahi et al. [19]. The continual learning
experiment used 100 samples per peak, a grid size of 20
without refinement or updates, 10 L-BFGS steps per phase,
and all other settings at PyKAN defaults. Details for the three
real-world datasets were covered in Sec. 4.4.

References
[1] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby,

L. Vogt-Maranto, and L. Zdeborová, “Machine learning and the
physical sciences,” Reviews of Modern Physics, vol. 91, no. 4,
p. 045002, 2019. 1

[2] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable
machine learning for scientific insights and discoveries,” Ieee
Access, vol. 8, pp. 42200–42216, 2020. 1

11

https://github.com/KindXiaoming/pykan
https://github.com/KindXiaoming/pykan
https://github.com/bagrow/multi-exit-KAN

[3] Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu,
F. Dong, C.-W. Qiu, et al., “Artificial intelligence: A powerful
paradigm for scientific research,” The Innovation, vol. 2, no. 4,
2021. 1

[4] H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak,
S. Liu, P. Van Katwyk, A. Deac, et al., “Scientific discovery
in the age of artificial intelligence,” Nature, vol. 620, no. 7972,
pp. 47–60, 2023. 1

[5] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang,
and L. Yang, “Physics-informed machine learning,” Nature
Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021. 1

[6] K. Kashinath, M. Mustafa, A. Albert, J. Wu, C. Jiang, S. Es-
maeilzadeh, K. Azizzadenesheli, R. Wang, A. Chattopadhyay,
A. Singh, et al., “Physics-informed machine learning: case
studies for weather and climate modelling,” Philosophical Trans-
actions of the Royal Society A, vol. 379, no. 2194, p. 20200093,
2021. 1

[7] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger,
M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen,
W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott,
A. Pritzel, S. Mohamed, and P. Battaglia, “Learning skillful
medium-range global weather forecasting,” Science, vol. 382,
no. 6677, pp. 1416–1421, 2023. 1

[8] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-
neberger, K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko,
et al., “Highly accurate protein structure prediction with al-
phafold,” nature, vol. 596, no. 7873, pp. 583–589, 2021. 1

[9] F. J. Montáns, F. Chinesta, R. Gómez-Bombarelli, and J. N. Kutz,
“Data-driven modeling and learning in science and engineering,”
Comptes Rendus Mécanique, vol. 347, no. 11, pp. 845–855,
2019. Data-Based Engineering Science and Technology. 1

[10] W. Bradley, J. Kim, Z. Kilwein, L. Blakely, M. Eydenberg,
J. Jalvin, C. Laird, and F. Boukouvala, “Perspectives on the
integration between first-principles and data-driven modeling,”
Computers & Chemical Engineering, vol. 166, p. 107898, 2022.
1

[11] A. Bell, I. Solano-Kamaiko, O. Nov, and J. Stoyanovich, “It’s just
not that simple: an empirical study of the accuracy-explainability
trade-off in machine learning for public policy,” in Proceedings
of the 2022 ACM conference on fairness, accountability, and
transparency, pp. 248–266, 2022. 1

[12] A. Ferrario and M. Loi, “How explainability contributes to trust
in ai,” in Proceedings of the 2022 ACM conference on fairness,
accountability, and transparency, pp. 1457–1466, 2022. 1

[13] R. Van Noorden and J. M. Perkel, “Ai and science: what 1,600
researchers think,” Nature, vol. 621, no. 7980, pp. 672–675,
2023. 1

[14] D. Castelvecchi, “Can we open the black box of ai?,” Nature
News, vol. 538, no. 7623, p. 20, 2016. 1

[15] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljacic,
T. Y. Hou, and M. Tegmark, “KAN: Kolmogorov–Arnold net-
works,” in The Thirteenth International Conference on Learning
Representations, 2025. 1, 2, 4, 6, 7, 11

[16] Z. Liu, P. Ma, Y. Wang, W. Matusik, and M. Tegmark, “Kan 2.0:
Kolmogorov-arnold networks meet science,” arXiv preprint
arXiv:2408.10205, 2024. 1, 3, 5

[17] J. D. Toscano, V. Oommen, A. J. Varghese, Z. Zou, N. Ah-
madi Daryakenari, C. Wu, and G. E. Karniadakis, “From PINNs
to PIKANs: Recent advances in physics-informed machine
learning,” Machine Learning for Computational Science and
Engineering, vol. 1, no. 1, pp. 1–43, 2025. 1

[18] B. C. Koenig, S. Kim, and S. Deng, “KAN-ODEs: Kolmogorov–
Arnold network ordinary differential equations for learning
dynamical systems and hidden physics,” Computer Methods in
Applied Mechanics and Engineering, vol. 432, p. 117397, 2024.
1, 2

[19] S. Panahi, M. Moradi, E. M. Bollt, and Y.-C. Lai, “Data-driven
model discovery with Kolmogorov–Arnold networks,” Phys.
Rev. Res., vol. 7, p. 023037, Apr 2025. 1, 2, 6, 11

[20] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture
search: A survey,” Journal of Machine Learning Research,
vol. 20, no. 55, pp. 1–21, 2019. 2

[21] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Artificial intelligence and statistics, pp. 562–
570, Pmlr, 2015. 2, 4

[22] S. Teerapittayanon, B. McDanel, and H. Kung, “BranchyNet:
Fast inference via early exiting from deep neural networks,” in
2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 2464–2469, 2016. 2, 4

[23] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning
for energy-efficient and enhanced pattern recognition,” in Pro-
ceedings of the 2016 Conference on Design, Automation & Test
in Europe, DATE ’16, (San Jose, CA, USA), p. 475–480, EDA
Consortium, 2016. 2, 4

[24] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini,
“Why should we add early exits to neural networks?,” Cognitive
Computation, vol. 12, no. 5, pp. 954–966, 2020. 2, 4

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, 2016.
2, 3, 10

[26] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989. 2

[27] A. N. Kolmogorov, On the representation of continuous func-
tions of several variables by superpositions of continuous func-
tions of a smaller number of variables. American Mathematical
Society, 1961. 2

[28] V. I. Arnold, “On functions of three variables,” Collected Works:
Representations of Functions, Celestial Mechanics and KAM
Theory, 1957–1965, pp. 5–8, 2009. 2

[29] A. N. Kolmogorov, “On the representations of continuous
functions of many variables by superposition of continuous
functions of one variable and addition,” in Dokl. Akad. Nauk
USSR, vol. 114, pp. 953–956, 1957. 2

[30] Z. Li, “Kolmogorov–Arnold networks are Radial Basis Function
networks,” arXiv preprint arXiv:2405.06721, 2024. 3

[31] J. Xu, Z. Chen, J. Li, S. Yang, W. Wang, X. Hu, and E. C.-
H. Ngai, “FourierKAN-GCF: Fourier Kolmogorov–Arnold
network–an effective and efficient feature transformation for
graph collaborative filtering,” arXiv preprint arXiv:2406.01034,
2024. 3

12

[32] E. Reinhardt, D. Ramakrishnan, and S. Gleyzer, “SineKAN:
Kolmogorov–Arnold networks using sinusoidal activation func-
tions,” Frontiers in Artificial Intelligence, vol. Volume 7 - 2024,
2025. 3

[33] S. Sidharth, A. Keerthana, R. Gokul, and K. Anas, “Cheby-
shev polynomial-based Kolmogorov–Arnold networks: An
efficient architecture for nonlinear function approximation,”
arXiv preprint arXiv:2405.07200, 2024. 3

[34] Z. Bozorgasl and H. Chen, “Wav-kan: Wavelet Kolmogorov–
Arnold networks,” arXiv preprint arXiv:2405.12832, 2024. 3

[35] D. C. Liu and J. Nocedal, “On the limited memory BFGS
method for large scale optimization,” Mathematical program-
ming, vol. 45, no. 1, pp. 503–528, 1989. 4, 11

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014. 4, 10

[37] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei, “Bert
loses patience: Fast and robust inference with early exit,” in Ad-
vances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33,
pp. 18330–18341, Curran Associates, Inc., 2020. 4

[38] J. Xin, R. Tang, Y. Yu, and J. Lin, “BERxiT: Early exiting for
BERT with better fine-tuning and extension to regression,” in
Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume
(P. Merlo, J. Tiedemann, and R. Tsarfaty, eds.), (Online), pp. 91–
104, Association for Computational Linguistics, Apr. 2021.
4

[39] S. Laskaridis, A. Kouris, and N. D. Lane, “Adaptive inference
through early-exit networks: Design, challenges and directions,”
in Proceedings of the 5th International Workshop on Embedded
and Mobile Deep Learning, EMDL’21, (New York, NY, USA),
p. 1–6, Association for Computing Machinery, 2021. 4

[40] H. Rahmath P, V. Srivastava, K. Chaurasia, R. G. Pacheco, and
R. S. Couto, “Early-exit deep neural network - a comprehensive
survey,” ACM Comput. Surv., vol. 57, Nov. 2024. 4

[41] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 4700–4708, 2017. 4, 10

[42] S.-M. Udrescu and M. Tegmark, “AI Feynman: A physics-
inspired method for symbolic regression,” Science advances,
vol. 6, no. 16, p. eaay2631, 2020. 6, 11

[43] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and M. Tegmark,
“AI Feynman 2.0: Pareto-optimal symbolic regression exploiting
graph modularity,” Advances in Neural Information Processing
Systems, vol. 33, pp. 4860–4871, 2020. 6

[44] K. Ikeda, “Multiple-valued stationary state and its instabil-
ity of the transmitted light by a ring cavity system,” Optics
communications, vol. 30, no. 2, pp. 257–261, 1979. 6

[45] S. Hammel, C. Jones, and J. V. Moloney, “Global dynamical
behavior of the optical field in a ring cavity,” Journal of the
Optical Society of America B, vol. 2, no. 4, pp. 552–564, 1985.
6

[46] K. McCann and P. Yodzis, “Nonlinear dynamics and population
disappearances,” The American Naturalist, vol. 144, no. 5,
pp. 873–879, 1994. 6

[47] H. van Deventer and A. S. Bosman, “Distal interference: Ex-
ploring the limits of model-based continual learning,” arXiv
preprint arXiv:2402.08255, 2024. 6

[48] T. F. Brooks, D. S. Pope, and M. A. Marcolini, “Airfoil self-noise
and prediction,” Tech. Rep. NASA-RP-1218, NASA Langley
Research Center, July 1989. NASA Reference Publication 1218.
8

[49] H. Kaya, P. Tüfekci, and F. S. Gürgen, “Local and global
learning methods for predicting power of a combined gas &
steam turbine,” in Proceedings of the international conference
on emerging trends in computer and electronics engineering
ICETCEE, pp. 13–18, 2012. 8

[50] P. Tüfekci, “Prediction of full load electrical power output of a
base load operated combined cycle power plant using machine
learning methods,” International Journal of Electrical Power &
Energy Systems, vol. 60, pp. 126–140, 2014. 8

[51] K. Hamidieh, “A data-driven statistical model for predicting
the critical temperature of a superconductor,” Computational
Materials Science, vol. 154, pp. 346–354, 2018. 8

[52] C. for Basic Research on Materials, “MDR SuperCon datasheet
ver.240322.” 8

[53] M. Kelly, R. Longjohn, and K. Nottingham, “The UCI machine
learning repository,” n.d. Accessed: 23 May 2025. 8

[54] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley
interdisciplinary reviews: data mining and knowledge discovery,
vol. 8, no. 4, p. e1249, 2018. 11

[55] R. C. Smith, Uncertainty Quantification: Theory, Implementa-
tion, and Applications. Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2013. 11

[56] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R.
Acharya, et al., “A review of uncertainty quantification in deep
learning: Techniques, applications and challenges,” Information
fusion, vol. 76, pp. 243–297, 2021. 11

[57] M. M. Hassan, “Bayesian kolmogorov arnold networks
(bayesian kans): A probabilistic approach to enhance accu-
racy and interpretability,” arXiv preprint arXiv:2408.02706,
2024. 11

[58] A. Mollaali, C. B. Moya, A. A. Howard, A. Heinlein, P. Sti-
nis, and G. Lin, “Conformalized-kans: Uncertainty quantifi-
cation with coverage guarantees for kolmogorov-arnold net-
works (kans) in scientific machine learning,” arXiv preprint
arXiv:2504.15240, 2025. 11

[59] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable
architecture search,” in International Conference on Learning
Representations, 2019. 11

[60] A. Paszke, “PyTorch: An imperative style, high-performance
deep learning library,” arXiv preprint arXiv:1912.01703, 2019.
11

13

	Introduction
	Background
	Kolmogorov–Arnold networks
	Multi-exit and early exit networks

	Adding exits to KANs
	Results
	Regression tasks
	Data-driven modeling of dynamical systems
	Continual learning
	Real-world data

	Learning to exit
	Learnable exit weights
	Optimization procedure
	Results

	Discussion
	Materials and Methods

