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Accurately and efficiently crowdsourcing complex, open-ended tasks can be difficult, as crowd participants
tend to favor short, repetitive “microtasks”. We study the crowdsourcing of large networks where the crowd
provides the network topology via microtasks. Crowds can explore many types of social and information
networks, but we focus on the network of causal attributions, an important network that signifies cause-
and-effect relationships. We conduct experiments on Amazon Mechanical Turk (AMT) testing how workers
propose and validate individual causal relationships and introduce a method for independent crowd workers
to explore large networks. The core of the method, Iterative Pathway Refinement, is a theoretically-principled
mechanism for efficient exploration via microtasks. We evaluate the method using synthetic networks and
apply it on AMT to extract a large-scale causal attribution network, then investigate the structure of this
network as well as the activity patterns and efficiency of the workers who constructed this network. Worker
interactions reveal important characteristics of causal perception and the network data they generate can
improve our understanding of causality and causal inference.
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1 INTRODUCTION
Crowdsourcing has emerged as a powerful technique for gathering data that are otherwise inacces-
sible, either computationally or logistically [9, 27]. These data may be training data for machine
learning algorithms, survey data, or the results of behavioral experiments [37, 59]. While data
gathering is a key use of crowdsourcing, crowd participants are also uniquely capable of ingenu-
ity and creativity, and the most powerful applications of crowdsourcing exploit this to provide
crowdsourcers with novel ideas and out-of-the-box thinking [2, 36, 58].
When applying crowdsourcing, there is often an antagonism between the complexity of the

task the crowdsourcer wishes to accomplish and the preference of crowd workers in favor of short
microtasks [38]. This has led to considerable research on decomposing various large-scale tasks
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into microtasks more suitable for the crowd [13]. In our case, we are interested in enabling the
crowd to efficiently explore large, unknown networks by asking workers to propose some of the
nodes and links within a particular network of interest.

The objective of this work is to study how independent crowd workers can efficiently explore a
large causal attribution network. We contribute a new algorithm for crowdsourcing large networks,
and perform simulations, conduct experiments and perform surveys to assess the activity patterns,
efficiency, and efficacy of workers using this algorithm. We focus on causal attribution networks,
where workers are asked to provide directed links between causes and effects, and so we also
conduct experiments on Amazon Mechanical Turk to better understand how workers attribute
causes and effects. Causal reasoning, while affected by cognitive biases, remains one of the biggest
differentiators between human intelligence and machine learning methods, making this problem
domain an ideal venue for crowdsourcing. Other types of networks, such as knowledge graphs,
concept maps, or social networks, may also be explored with crowds.

A simple way to decompose the larger network exploration task into microtasks is to ask workers
to validate a single link for each task, but this provides minimal information per task and may not
be efficient. Motivated by theoretical studies of network search strategies, we propose and evaluate
a network exploration microtask—Iterative Pathway Refinement—where workers create and
modify pathways, short linear paths of nodes, within the larger network. These pathways are easy
for workers to modify, provide more information than can be gathered from a single link microtask,
and the union of these pathways provides inference of the larger network being explored.
The rest of this work is organized as follows. Section 2 surveys previous research on several

aspects of the problem we study, including crowdsourcing, causal attribution, and network search.
Section 3 describes our first experiment conducted on Amazon Mechanical Turk (AMT). The
goal of this experiment is to estimate the efficacy of crowd workers tasked with proposing and
validating individual cause-and-effect relationships. Motivated by this experiment and with the
goal of maximizing crowd efficiency, in Sec. 4 we introduce a set of algorithms enabling a crowd of
workers to collectively explore a large network while individually participating only in microtasks.
Then, Sec. 5 presents our second experiment implementing these algorithms on AMT to derive a
large-scale causal attribution network, while Sec. 6 performs a followup analysis on the quality
of responses generated with our new algorithms. Section 7 proposes a mathematical model for
the exploration algorithm and analyzes it on known test networks, to better understand how a
sampled network derived via our exploration algorithm differs from a true, underlying network.
We conclude with a discussion in Sec. 8, including how our work here can be generalized and can
inform the crowd exploration of other types of networks.

2 BACKGROUND
The focus of this work can best be understood in the context of three research areas: crowdsourcing,
causal attribution theory, and search in networks.

2.1 Crowdsourcing
Crowdsourcing is the recruitment and application of large groups of individuals towards the
generation of work [9, 20, 27]. The crowd may be voluntary participants or paid workers, and they
may or may not need to be subject-matter experts in areas relevant to the particular crowdsourced
tasks. Common crowdsourcing tasks include labeling images, disambiguating written records, and
participating in surveys and behavioral experiments. Yet, the experience and creativity of crowd
workers is one of the most unique aspects of crowdsourcing, and leveraging these assets can achieve
results far beyond the confines of “artificial artificial intelligence” [36].
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The most popular online platform for recruiting paid workers is Amazon Mechanical Turk (AMT).
Large crowdsourcing tasks are generally broken down into “microtasks” referred to on AMT as
Human Intelligence Tasks (HITs). Dividing a large task or set of tasks into many small microtasks,
either manually or algorithmically, is one of the most effective ways to distribute complex work
over a crowd [38, 43]. Many methods use a propose-and-vote/fix-verify/select-validate mechanism
for decomposing complex tasks without harming reliability or quality [3, 5, 14, 56]. Monitoring
and improving upon the completion times of microtasks and batches of microtasks is an important
aspect of crowdsourcing, as it can improve overall efficiency and quality [17, 29, 37]. Efficiency and
quality are also enhanced by using statistical aggregation strategies that combine multiple worker
responses to microtasks [15, 32, 40].

Many crowdsourcing projects study the problem of assigning workers to a fixed set of predeter-
mined tasks [42], for example annotating a collection of images, but a growing body of work is
considering areas where the crowd contributes new tasks to the crowdsourcer [6, 8, 56, 58, 61, 63].
Crowdsourcing the collection of network data is an under-explored area, particularly in the

context of non-expert participants. One study considers crowdsourcing a network of synonymous
terms—essentially a thesaurus—as a testbed for algorithms to efficiently distribute workers across a
growing a set of tasks [45]. Another interesting study is the DREAM predictive signaling network
challenge, where research teams were challenged to determine protein signaling networks from
experimental data [25, 44, 51]. This challenge is specific to a single research area, and only experts
in that area can reasonably contribute work. In general, it remains an open question how best to
use crowdsourcing to explore large networks.

2.2 Causal attribution
Identifying and understanding causal relationships is a crucial way humans comprehend the world
around them. Causal inference has been a major focus of philosophy, psychology, mathematics, and
statistics for centuries [21, 22, 28, 31, 35, 50, 55]. While much progress has been made developing
statistical tools, establishing causal relationships remains an outstanding scientific challenge.

Human understanding and perception of cause and effect relationships is complicated and influ-
enced by language structure [11, 26, 34, 60] and sentiment [7]. The famous perception experiments
of Michotte et al. have led to a long thread of experiments exploring how and why cognitive biases
affect causal attribution [30, 54, 57]. Accounting for such biases is crucial to better understand
causal attribution at scale.

2.3 Network exploration and search
A key question within Network Science is the problem of network exploration: how can an agent
with only local or partial information understand the global structure of a large network? Likewise,
how can an agent moving within a network efficiently find a predetermined search target? Search
strategies are useful both for finding a given target and for efficiently mapping out the underlying
structure of the network topology.
The ability to efficiently identify a target node in a network is a problem that has been studied

since the seminal “small-world” work of Travers and Milgram [62]. Many successful strategies
exploiting only local information are known for spatial networks and power-law networks [1, 39].
One such strategy to explore a network is to preferentially seek out the highest-degree nodes or
hubs, those nodes with the most connections [1]. The more quickly a searcher arrives at a hub, the
more avenues it has to explore the rest of the network, although this may lead to a biased view of
the hubs if the network is not fully explored. Another well-supported local strategy is to perform a
self-avoiding walk (SAW), moving randomly over the nodes of the network without returning to
any previously visited nodes [1, 65]. The established success of SAW search provides a motivation
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and theoretical underpinning for the key phase of the crowdsourcing algorithm we introduce in
this work.

3 EXPERIMENT 1 — SINGLE LINK LEARNING
This experiment tests the ability of crowd workers to provide causal attribution information. Each
crowdsourcing task focuses on asking workers to validate a single cause-effect pair by asking,
for example, “Does ‘intelligence’ cause ‘foresight’?”. These candidate cause-effect term pairs (A,B)
(‘intelligent’, and ‘foresight’ in this case) were tested by workers, who could respond with one of
several multiple choice answers: (i) “A causes B”, (ii) “B causes A”, (iii) “A and B are unrelated”, (iv)
“something else causes both”.

Aggregating multiple choice responses from multiple workers as they examine different term
pairs allows this approach to study a larger network of causes and effects. However, the focus of
Experiment 1 is estimating the efficacy of worker’s causal attribution using various benchmark
datasets. In Experiment 2 (Sec. 5) we return to the problem of network exploration.

3.1 Materials and methods
To study the efficacy of worker attributions of causal relationships, we extracted candidate cause-
effect term pairs from two datasets:

Ground Truth data A benchmark database of 85 established cause-effect pairs [47]. These
data are intended for validating causal detection algorithms. Many pairs, though not all, tend
to cover scientific domains. Updated versions of this dataset currently provide 108 total term
pairs.

Word Association data A set of 90 term pairs sampled randomly from the University of South
Florida Free Association Norms dataset [49]. These data were collected over several decades
from more than 6,000 participants. Each participant was shown a stimulus word and asked
to produce the first word that comes to mind that was meaningfully related or associated
with the stimulus. These associations provide a baseline for us to test; the terms in a pair
may be causally related or the association may be due to other factors.

Further, we introduced randomized versions of both datasets by shuffling the terms between
pairs. These randomized term pairs provide a base set of approximate known negatives to see what
rate workers may attribute causal connections when a relationship is unlikely. Randomizing the
same terms controls for the overall domains and contexts of the data while breaking any preexisting
connections, either causal or associational, between terms in a pair. It is possible, of course, that a
strong relationship between two random terms may exist, but this is less likely for the randomized
data than for the original terms. A total of 350 distinct term-pairs were developed across the four
datasets.
Data were collected on Amazon Mechanical Turk. Workers were shown a multiple choice web

form for each HIT, asking them to select one of four options relating cause-effect pair (A,B): A
causes B, B causes A, A and B are unrelated, something else causes both. An example of this form
is shown in Fig. 1. As instructions, workers were shown the HIT web form populated with an
example cause-effect term pair (“Population growth”, “Food consumption growth”) before their
first HIT. Workers were rewarded $0.04 per response. We aimed to collect n = 50 responses for
each of the 350 distinct term-pairs.

This research procedure has been approved by our IRB (determination number CHRBSS: 15-039).
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“foresight” and “intelligent” 
often appear together in written 
text, but we are unsure how 
they are related

Do you think:
      foresight causes intelligent
 intelligent causes foresight
 foresight and intelligent are unrelated
 something else causes both

Describe another quantity related to 
foresight and intelligent

70%

16%

8%

6%

Survey results (n = 50)
for this pair:

Example survey

brain

submit

Fig. 1. Example survey conducted as part of Experiment 1, in this case for the terms “foresight” and “intelligent”.
The crowd reached strong consensus that intelligence causes foresight.

3.2 Results
We gathered 17,556 responses from 726 Mechanical Turk workers. Workers could complete as many
HITs as available, but could not respond to the same term pair more than once. The mean and
median numbers of responses per worker was 24.18 and 3, respectively.
We aggregated the total crowd responses to each term-pair and classified the link between the

terms as either ‘causal’, ‘confounded’, or ‘unrelated’ based on the majority response from workers
shown that pair. For example, the pair (“intelligent”, “foresight”) shown in Fig. 1 had 78% causal
responses (attributing causality in either direction) so we classify it as a causal link. In this particular
term pair, the direction of causality is clearly supported by the crowd, but other pairs with a majority
‘causal’ classification may be mixed, with workers split on whether A causes B or B causes A. Such
a split is a useful signal that more information may be needed to better understand that particular
term pair and perhaps other causes and effects related to those terms.

Figure 2 compares the majority crowd classification for terms across the test datasets. In both non-
randomized datasets, the most common classification is ‘causal’, whereas in the two randomized
variants, the most common classification is ‘unrelated’. Comparing the original and randomized
ground truth dataset (Fig. 2A), there is a clear difference in the proportion of cause-effect pairs
labeled as ‘causal’ versus ‘unrelated’: 80% of the ground truth pairs have a crowd-majority label of
‘causal’ compared with 40% for the randomized ground truth data. At the same time, approximately
10% of ground truth pairs are labeled as ‘unrelated’ by the crowd majority, compared with 60% for
the randomized ground truth. A similar classification difference holds between the word association
and randomized word association data (also Fig. 2A).

However, workers appear to be over-reporting the incidence of causal relationships: 40% causal
relationships for the randomized ground truth data and 80% causal relationships for the word
association data both seem quite high. Workers may be biased in favor of explaining causal
relationships where none exist [7, 60]. At the same time, however, other factors may be at play: (i)
the domain of terms within the ground truth dataset is relatively narrow, making it more likely
for random pairs to be related; (ii) the word association terms are generated by individuals who
could very well be using cause-effect reasoning when they ideate an associated term. Likely both
biased over-reporting and true causal relationships are leading to the causal attribution rates for
the shuffled data.
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Fig. 2. Results of Experiment 1. (A) The proportion of majority responses for the four datasets. (B) Self-
reported confidences given by workers for their answers for the four seed datasets. Confidence was indicated
by a 1–5 Likert scale.

Workers were asked to report their self-confidence in their responses on a 1–5 Likert scale
(1-lowest confidence). Figure 2B reports the distributions of their scores for the first four datasets.
Workers were more confident overall for the word association data than the ground truth data,
plausible as the latter were taken from more technical domains. Workers responding to randomized
variants of both datasets typically had lower confidence than workers responding to pairs taken
from the original datasets

4 EFFICIENT EXPLORATION AT SCALE
A drawback of the single-link learning scheme studied in Experiment 1 is lack of scalability. To
build a causal network requires asking potentially many workers to support or falsify each link
within a single task, which may become cost prohibitive. To address this, here we introduce a
multi-stage algorithm that efficiently explores a network such as a causal attribution network. The
algorithm proceeds by first asking workers to develop a pathway or chain of causes and effects
rooted by an initial seed term. This pathway is then taken by workers and modified into new
pathways by adding new terms, removing old terms, and so forth. This process iterates, repeatedly
developing new pathways from old ones. Lastly, the final network is taken from the union of all
worker-derived pathways.

We describe the algorithm in the context of causal attributions, but this scheme can be applied
with little or not modifications to any network where workers possess enough knowledge and
context to offer helpful exploration. The full algorithm is summarized in Alg. 1. We implement this
algorithm in our second experiment (Sec. 5) and explore how well it samples a known network
computationally in Sec. 7.

4.1 Cause Proposal (CP)
The algorithm begins from a single seed cause. A researcher can choose this cause as a starting
point based on her needs or research interests, or she can ask the crowd to propose a cause that is
of interest to them. For the latter case, used in this study, the proposal phase can be broken down
into two steps: first, workers propose a collection of potential causes, and then workers can rank
that list of causes according to some desired criteria. This ranking can be developed by showing
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C1

C
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B1

Bn
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...
Fig. 3. Greedy Pathway Expansion (GPE) to learn the causal chain A → B → C → · · · . Starting from a
seed cause A, n candidate effects B1, . . . ,Bn are proposed and validated by the crowd. The highest quality
Bi , meaning the effect Bi for which the crowd most agrees on A → B, is then chosen as the first link in
the pathway. This B is then used as the start for the next iteration, which continues until N links along the
pathway have been determined.

the workers a list and asking for their top choice, asking the workers to sort the list themselves,
or by performing pairwise comparisons and then using a ranking algorithm [18] such as Rank
Centrality [48] to select the top cause. The latter is most useful if many causes are proposed. The
top ranked cause (or causes) can then be used as the seed for the next phase.

4.2 Greedy Pathway Expansion (GPE)
This phase begins from one or more previously developed seed causes. Workers are asked to
propose effects for a given cause (“What do you think is caused by ‘poverty’?” ). The crowdsourcer
develops n potential effects {Bi }ni=1 for cause A. Then, workers are asked to rank these effects from
most plausible to least plausible and the top-ranked Bi ≡ B is chosen. That cause-effect term pair
(A,B) forms the first link in a chain of causes and effects. This process then repeats starting from
B to learn the next link, and this continues until a full pathway P = (A,B,C, . . .) of length N is
developed. An illustration of this greedy pathway expansion is shown in Fig. 3.

These propose-and-rank steps are very similar to those used in the previous proposal phase, and
workers can easily be shared between these tasks, although one may wish to use different sets of
workers for different phases if desired, for example, if there is a concern about possible bias in their
responses.
It is also worth noting that workers asked to rank effects will see each link of the pathway

independently, meaning they are asked to evaluate potential link (A,Bi ), link (B,Ci ), etc. They do
not see, for example, the longer chain of causes and effects (A,B,Ci ), and seeing the context of A
may potentially change their selection of the best candidate effect Ci for a given cause B. The next
phase of our algorithm addresses this, by allowing workers to see and modify longer pathways of
causes and effects.

4.3 Iterative Pathway Refinement (IPR)
The goal of this phase of the crowdsourcing is to develop a larger set of pathways starting from the
pathway(s) developed during the previous GPE phase. Here workers are shown a pathway using a
web form that allows them to quickly edit and update the pathway. Updates can include insertions,
deletions or rearrangements of the terms within the pathway, and workers can accomplish all of
these tasks with a simple drag-and-drop interface in order to be as efficient as possible.
Each worker participating in this phase is shown a chosen pathway Pi , either the original GPE

pathway or a subsequently developed pathway introduced by an earlier IPR worker. The worker
uses the web form to modify Pi into a new pathway Pi+1. This new pathway is inserted back into
the pathway set and the algorithm repeats for the next worker.
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ALGORITHM 1: Multi-phase crowdsourcing algorithm for (causal) network exploration. All phases of
the algorithm can run in parallel: the crowd can develop multiple seed causes, work simultaneously on
multiple GPE pathways, and so forth.

(1) Cause Proposal (CP):
(a) Workers propose n root causes Ai .
(b) Workers rank these Ai ’s by interest, select top ranked A ∈ {Ai }ni=1 as the seed cause.

(2) Greedy Pathway Expansion (GPE) (Fig. 3):
(a) Workers propose candidate effects Bi for seed cause A, leading to potential causal links A→ Bi .
(b) Workers vote on these A→ Bi . Choose the top ranked B ∈ {Bi }ni=1, leading to causal link A→ B.
(c) Repeat from 2a with B as the new root cause until a pathway P0 = (A,B, . . .) of length N is achieved.

(3) Iterative Pathway Refinement (IPR):
(a) Initialize a set of pathways P seeded by the initial GPE pathway, i.e. P = {P0}.
(b) Workers iteratively refine pathways. A new worker is shown a selected pathway Pi ∈ P, and uses a

drag-and-drop interface (Fig. 4) to add, remove, and reorder terms in Pi to create Pi+1. The new
pathway is added to the set: P ← P ∪ {Pi+1}.

(c) Repeat from 3b until a desired number of pathways are developed.

(4) Network Extraction:
(a) Define a network G = (V , E) by taking the union of all pathways developed in 3. Specifically,

V = {T | T ∈ Pi , where Pi ∈ P} and
E = {(Tj ,Tj+1) | Tj ,Tj+1 ∈ V , ∃Pi ∈ P s.t. (Tj ,Tj+1) is a substring of Pi }.

Because workers develop entire cause-effect pathways per microtask, this task structure provides
considerably more information about the network per task than could be attained by the single-link
(SL) learning experiment (Experiment 1). Of course, IPR is a more complex task than SL, so it is
important to assess the speed of workers when investigating the efficiency of IPR, which we do in
Experiment 2 (Sec. 5). By taking the union of all the pathways, a single causal attribution network
can be estimated. Specifics details on network extraction are given in Algorithm 1.

Extensions and modifications
The multi-phase algorithm we propose here is modular and extensible in several ways, and a crowd-
sourcer is free to adapt the different components to meet her needs. For example, a crowdsourcer
may skip the proposal of root terms if she already has a seed set to use. Likewise, one can bypass
the Greedy Pathway Expansion phase and go directly to Iterative Pathway Refinement, either by
using a pathway of one term as the original pathway seed set, or by starting from one or more
predetermined pathways if they are available. The algorithm is easily parallelized, allowing the
same crowd to contribute simultaneously to different network explorations, for example starting
from different seeds. Lastly, while the algorithm is described and applied in this work to the case
of directed causal attribution networks, it is by no means limited to such cases, and can serve
as an effective crowd exploration method for any networks where the crowd is suitable for ex-
ploration. Indeed, Iterative Pathway Refinement is a special case of a more general exploration
method—Iterative Motif Refinement—where workers construct and modify small subgraphs known
as motifs [46], of which directed pathways are one such motif. We discuss such generalizations
further in Sec. 8.
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5 EXPERIMENT 2 — CAUSAL ATTRIBUTION AT SCALE
To demonstrate our crowdsourcing algorithm (Sec. 4), we implemented it on Amazon Mechanical
Turk (AMT) as a collection of interrelated Human Intelligence Tasks (HITs). Our implementation
proceeded primarily along the lines of the algorithm delineated in Sec. 4, with a few practically-
motivated key differences. For example, multiple causes were proposed via the Cause Proposal HITs
and multiple pathways were constructed simultaneously during the Greedy Pathway Expansion
HITs.

5.1 Materials and methods
We implemented three HIT web interfaces for workers corresponding to the Cause Proposal
(CP), Greedy Pathway Expansion (GPE), and Iterative Pathway Refinement (IPR) phases of the
crowdsourcing algorithm detailed in Sec. 4. These are known as “external” HITs on AMT as the
web forms are hosted on our own server that workers access through an iframe within the AMT
website. At each phase we chose various criteria described below for the number of responses to
collect, balancing the quantity of data needed with budgetary limits. Practitioners applying our
algorithm or one similar to it will likely face similar decisions but this will generally depend on
their particular circumstances. For all tasks, workers could not respond multiple times to the same
information; they could not vote on the same cause-effect pair more than once, for example. This
research procedure has been approved by our IRB (determination number CHRBSS: 15-039).

The CP task showed workers an example of a cause-effect pathway and asked the worker either
to propose or to rank 3–5 causes that they believed “may have very surprising or unintended or
interesting effects” (see App. A for screenshots of task interfaces with instructions). Care was taken
with these instructions: we wanted the workers to have simple instructions that demonstrated
causal relationships but did not prime them in terms of quantifying how interesting or important
the causes should be. While we could have given them detailed selection criteria to follow (we
plan to study this in future work), here we are mainly interested in determining what crowd
workers consider important, as free from our influence as possible. This goal is in contrast with
most crowdsourcing research that emphasizes the importance of detailed, exact instructions. In
this phase, we sought 50 proposed causes, 20 worker rankings per cause, and we selected the top
eight ranked causes. These eight root or seed causes were then passed to the GPE HITs.

For the GPE task, we used a HIT very similar to the CP HIT but now asking workers to either (i)
propose effects for a given cause, or (ii) vote on effects by either agreeing or disagreeing with a
given cause-effect pair. See App. A for the GPE instructions. At each step when growing a GPE
pathway from a given cause, we sought 10 unique effects for that cause (part i), and we sought 5
different workers to validate each of the 10 effects (part ii). When finished, the effect which received
the highest proportion of affirmative votes was selected as the next piece of the GPE pathway (any
ties were broken at random) and the GPE task restarted with the newly chosen effect as the given
cause. Note that the GPE phase was conducted on all 8 pathways in parallel, and workers could
propose and/or vote on any tasks available in any of the chains. We continued this process until
the GPE pathways had an average length of 5 terms. These pathways then seed the IPR HITs.
The IPR task is the most important phase of our algorithm, and subsequently had the most

detailed, interactive web interface. Figure 4 shows a screenshot of the IPR interface. Unlike tasks
in the previous phases, there is no switching between propose and vote subtasks. Workers were
simply shown a causal pathway selected at random from the set of available pathways and asked
to modify the pathway. The pathway was presented as a vertical list that workers could rearrange
using drag-and-drop operations. Workers could also insert terms into the pathway and delete terms
from the pathway using the same task interface. Upon receiving the modified pathway from the

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 24. Publication date: November 2018.



24:10 D. Berenberg & J. P. Bagrow

1 3

2

Fig. 4. Screenshot of the task interface for workers participating in Experiment 2’s Iterative Pathway Re-
finement task. The pathway of terms listed in the lower left (Callout 1) is reorderable using drag-and-drop
operations. Insertions and deletions can be made using the form as well (Callouts 2 and 3, respectively). The
instructions box is collapsed in this view but is shown expanded before the worker chooses to accept the HIT
(see Appendix A).

worker, we inserted it back into the pool of pathways alongside the original pathway. To prevent
workers from modifying old pathways too often, pathways are flagged as ‘unavailable’ if more
than 5 modified pathways were derived from it by workers. We sought 1500 IPR responses from
workers.

5.2 Results
The three phases of the crowdsourcing algorithm (Cause Propose, Greedy Pathway Expansion,
Iterative Pathway Refinement) were run sequentially on Amazon Mechanical Turk. We did not
filter or manually remove any responses across the tasks. However, there is often a lag between
giving a worker a task and receiving a response, so we often receive slightly more responses than
necessary as the “stragglers trickle in”. We consider this acceptable as it has a minor effect on our
budget, but in principle a crowdsourcer could more carefully reserve tasks deployed to workers to
prevent this. Altogether, 27 workers submitted 48 unique (50 total) root causes. We selected the top
8 ranked causes to initialize 8 GPE pathways. These pathways were then expanded by workers
until they had an average length of 5 terms; we received 41 distinct terms across the 8 pathways.
Lastly, IPR workers provided 1567 pathways, including the 8 original GPE pathways.

The net result is a collection of 1567 pathways representing 394 unique terms and 1329 distinct
cause-effect term pairs. We summarize the numbers of responses, numbers of workers, and rewards
per HIT for each phase in Table 1.
Likewise, Table 2 summarizes the eight initial seeds and subsequent pathways built by crowd

workers during the first two phases of the experiment. The first term of each pathway is a seed
developed during the first phase, while the pathway itself was developed during the second or GPE
phase. All terms here and throughout the causal network were introduced by workers. Interestingly,
there is a roughly even split between positive sentiment (“ambition”, “education”) and negative
sentiment (“inequality”, “fear”) seed terms.
The GPE pathways shown in Table 2 were used to seed the pathway set developed during the

Iterative Pathway Refinement (IPR) phase. Workers in this phase developed a total of 1567 distinct
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Table 1. Summary of crowdsourcing tasks for Experiment 2. Rewards are in USD.

Task # responses # workers reward per HIT
Cause Proposal:
— Proposal 17 17 $0.17
— Rank 926 98 $0.17
Greedy Pathway Expansion:
— Proposal 591 84 $0.07
— Vote 2136 122 $0.07
Iterative Pathway Refinement 1567 96 $0.17

Table 2. Initial pathways developed using Greedy Pathway Expansion in parallel during Experiment 2. The
seed terms developed during the Cause Proposal task are the first terms of these pathways. All terms were
introduced by workers. Pathways are listed in arbitrary order.

1) inequality→ resentment→ contempt→ anger→ mistakes→ accidents→ personal injury→ pain
→ suffering

2) wealth→ stability→ comfort→ security
3) poverty→ hunger→ starvation→ death suffering misery→ sadness
4) fear→ sweating→ dampness→ mold→ illness
5) curiosity→ ideas→ inventions→ new products
6) ignorance→ stupidity→ bad mistakes→ bad results
7) ambition→ work ethic→ economic growth→ progress→ growth
8) education→ knowledge→ curiosity→ discovery→ invention growth change

causal attribution pathways. Only 5 pathways contained a duplicate term and only one was a
self-loop (“economic growth” caused “economic growth”).

5.2.1 Patterns of pathway refinement. We explore the patterns of pathways and how work-
ers edit pathways in Fig. 5. Using the IPR interface, workers given a path can make any of four edit
operations: insertion of a new term, deletion of an old term, substitution of an existing term with
a new term (counted as a separate operation although it is a deletion and subsequent insertion at
the same position), or the transposition of two existing terms. The first two edit operations are
the most common choices workers make (Fig. 5A, B). At least one insertion occurred in over 50%
of responses while at least one deletion occurred in over a third of responses (Fig. 5B). The mean
length of pathways submitted by workers is 5.17 terms; the distribution of pathway lengths is
shown in Fig. 5C.

Tracking the locations of the two most common edit operations performed by workers, insertions
and deletions, both operations are more likely to occur towards the beginning of a given pathway
than expected from the overall distribution of pathway length (Fig. 5D). Further, insertions occur
more often than deletions at the end of pathways.

A bias in favor of edits located near the beginning of a pathway could be the result of cognitive
mechanisms by which individuals process chains of causes and effects. But it could instead simply
be evidence that workers are satisficing, finding means to acceptably complete the IPR task as
quickly as possible. If the latter, this could indicate that workers are preferentially ignoring the
later terms in a pathway.

To investigate satisficing, in Fig. 6 we study the elapsed time workers spend on a given IPR task
and the average positions of insertions and deletions within the pathway, both as functions of the
initial length of the pathway shown for that task. If workers are satisficing we expect to observe an
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approximately flat trend in elapsed time versus initial path length, at least for longer pathways.
Likewise, if satisficing, the average position of insertions and deletions would also tend towards
a constant with pathway length. Neither occurs: the elapsed time grows roughly linearly with
initial path length (Fig. 6A) as does the mean location of edits (Fig. 6B). Further, if some workers
were satisficing by only studying the tail of the pathway instead of the head, we would observe a
non-monotonic trend in Fig. 6, which does not occur. While satisficing is likely still occurring for
some workers, these trends provide evidence that many if not most workers are taking the time to
process and understand the full length of the pathway.

5.2.2 The causal attribution network. Taking the union of all IPR pathways in the Network
Extraction phase (Sec. 4) yields the final causal attribution network developed by this experiment.
This is a weighted, directed network where each edge (i, j) indicates that i “causes” j, and the edge
weightwi j associated with this edge denotes the number of IPR pathways containing the directed
link (i, j). We visualize this network in Fig. 7.
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Fig. 7. A network visualization of the directed causal attribution network constructed by workers. Node size
is proportional to degree (indegree + outdegree), node color proportional to closeness centrality, edge width
proportional to edge weight.

We remark upon a number of interesting features of this causal network. Particularly intriguing
is that the network is roughly clustered into two groups, one focused on positive terms (“progress”,
“growth”, “success”, etc.), and another around negative terms (“suffering”, “resentment”, “depres-
sion”). This clustering, which comes from the initial GPE pathways (Table 2) likely reflects known
emotional and valence effects underlying causal attribution [7]. We see that workers are more
likely to ideate causal relationships that are at the emotional extremes, either very positive or very
negative.

Within the clusters, multiple causal links appear strongly supported by the crowd, for example,
the links between stability, security, and comfort in the lower left of the network or the link
from poverty to hunger (and not vice versa). There are also a number of cause-effect pairs where
the crowd is split on the directionality: for example, “discovery causes knowledge” occurs in 57
pathways while “knowledge causes discovery” occurs in 64 pathways.
Turning our attention from the qualitative view of the network (Fig. 7), we next investigate

quantitative properties of the network. Figure 8 shows the distributions of indegree, outdegree, edge
weight (number of pathways containing a given cause-effect pair) and betweenness centrality (how
often a term is in a shortest path in the network). In all cases, these statistics follow heavy-tailed,
non-Gaussian distributions. Interestingly, after rescaling each quantity by its mean value (Fig 8,
bottom row), the different quantities follow similar distributions.

Lastly, to evaluate the significance of the causal network structure, at least along one dimension,
we consider the prevalence of feedforward loops and feedback loops in the network (Fig. 9A).
Feedforward loops are an important structural motif in directed networks [46] and feedback loops
are a key component of causal homeostasis [33]. We used the statistical procedure of Milo et
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Fig. 8. Properties of the crowdsourced causal network shown in Fig. 7. (A) Degree distributions, (B) edge
weight distribution, (C) Betweenness centrality distribution.

al. [46] to evaluate the significance of the three-node feedforward loop and feedback loop motifs.
Specifically, we enumerated all feedforward and feedback loops in the crowdsourced network
and compared that number in Fig. 9B with the same quantity computed from 5000 null networks
generated using an in- and outdegree-preserving randomization procedure [46]. The observed
network has significantly more feedforward loops and feedback loops than expected according
to Milo et al.’s null model (z ≈ 30.99, p < 10−200 for feedforward loops; z ≈ 19.30, p < 10−80 for
feedback loops). Expanding on our analysis of feedforward and feedback loops, Fig. 9C shows all
the statistically significant three-node motifs, including their occurrence frequency and z-scores
relative to the null model. Seven of the 16 possible three-node motifs were significant. Motifs in
Fig. 9C were found using FANMOD with default parameters [64]. Understanding these structural
motifs allows us to better characterize properties of the crowdsourced causal attribution network.

5.2.3 Speed of workers. The IPR task will explore more of a network with fewer worker
responses than the “single link” task used in Experiment 1 (Sec. 3). But this is expected, as each
IPR task is more complex and provides more information. But since the IPR task is so complex,
it is likely that workers require more time to complete IPR tasks than single link tasks. Indeed,
examining in Fig. 10 the distributions of elapsed times, the delay between when a worker receives
and submits a task shows exactly that: IPR workers require more time than single link workers to
complete their task.
However, while slower elapsed times for the IPR task seems to imply that the crowdsourcing

algorithm is not efficient in terms of time-to-explore, the direct comparison between these elapsed
times is not necessarily appropriate. As workers provide information on multiple links within a
single IPR task, it is better to compare the elapsed time per link for IPR workers with the elapsed
time of single link workers. Even those links in the pathway that remain unmodified by the worker
still receive an additional “vote” when taking the union of the pathway set, so normalizing the
elapsed time relative to the total length of the IPR pathway accounts for the total information
provided by the worker. Figure 10 shows that IPR workers provide information more quickly per
link than single link workers. IPR workers had a mean elapsed time per link of 59.00 seconds,
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compared with 68.03 seconds on average for single link workers. This difference in distributions
was significant (Mann-Whitney U test, p < 10−15). Thus, the rate of information gain for IPR
workers is significantly faster than single link workers.

5.3 Experiment 2 Discussion
Taken together, the crowd was able to generate a relatively large and meaningful causal attribution
network using our multi-phase algorithm. Of course, the causal network as it stands after this
experiment is not the final form of these data, and more work should be taken to filter the network.
Specifically, terms that are overly vague (“unintended adverse outcomes”) should be improved,
the network likely contains synonymous terms that should be aggregated, and there remain a
large number of terms on the periphery of the network that should be further explored. That
said, the data collected from workers provide useful cause-and-effect relationships, possesses

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 24. Publication date: November 2018.



24:16 D. Berenberg & J. P. Bagrow

statistically significant network structure, and the edit patterns of workers can help researchers
further understand cognitive aspects of causal attribution.

The IPR task forming the core of the crowdsourcing algorithm enabled workers to be significantly
faster at providing network information than workers asked to validate a single link per task, with
IPR workers completing the task approximately 9 seconds faster per link on average. Such a time
difference when compounded over a large network exploration can have a sizable impact on the
overall completion time of the crowdsourcing. Further improvements on the interface of the IPR
task, such as allowing workers to edit pathway terms in place instead of using drag-and-drop
operations to update terms, will likely improve worker speed even more.

6 EVALUATING RESPONSE QUALITY
Experiment 2 (Sec. 5) provides evidence that workers can build a graph more efficiently with our
algorithm (Sec. 4) than they could working one link at a time (as per Experiment 1 in Sec. 3). But
does this efficiency come at a cost? Are we trading off quality for quantity?
While Experiment 1 studies how workers attribute cause and effect using a small ground truth

dataset, it is challenging to systematically investigate the quality of Experiment 2’s network as no
ground truth is available. In light of this and to provide at least some information on quality, we
performed a followup crowdsourcing survey asking workers to examine results generated during
Experiment 2. We presented new crowd workers with potential cause-effect pairs taken from the
causal attribution network (using questions of the form “Do you think that A causes B?”) and asked
them if they agree or disagree (or were uncertain) with these attributions. The goal of this survey is
for workers to signal some degree of relative quality (or at least consistency) by assessing previously
generated causal attributions. This survey task is identical in form to the ‘vote’ phase of Greedy
Pathway Expansion (Sec. 4). To provide an independent assessment, workers who participated in
Experiment 2 were excluded from this followup task.

For this new task we extracted two groups of n = 50 cause-effect pairs (n = 100 total) sampled at
random from Experiment 2’s graph:

(1) In the first group, each cause-effect pair (i, j) was a directed link within the causal attribution
graph. Half (n = 25) of the sampled links had low weight (wi j ≤ median link weight) while
half had high weight (wi j >median link weight). Since link weightw is the number of worker
responses containing the link, we assume “stronger” links are more likely to be approved.

(2) Our second group focuses on disconnected nodes, asking workers to agree/disagree with
potential causal attributions not captured in the current network. Half (n = 25) of the node
pairs were chosen at random from those pairs at distance d = 2 in the network, meaning they
were only two hops apart on the network. It is plausible that some or even many of these pairs
have a causal relationship yet to be introduced by workers since, if the link between them
existed, they would form a feedforward loop (Sec. 5.2.2). The second half of the group consists
of pairs of nodes at distance d > 2, capturing more distant nodes. We expect these node pairs
to be less likely to hold a causal relationship, although some may have a relationship.

We collected 984 responses from 114workers with each of then = 100 cause-effect pairs examined
by at least 8 workers. Workers were compensated $0.07 per response and each worker was limited
to at most 25 responses to provide room for many different workers to respond. This research
procedure has been approved by our IRB (determination number CHRBSS: 15-039).

The results of these followup surveys are summarized in Fig. 11 where we present the fraction of
workers who approved or were uncertain about a potential cause-effect pair. Most workers tended
to approve of links already present in the network, even the low weight links (although workers
were more uncertain about low-weight links). Workers also approved causal attributions for most
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Fig. 11. A followup survey asking workers who did not participate in Experiment 2 if they agree, disagree or
were uncertain about cause-effect links and unlinked potential cause-effect pairs taken from the network
generated by Experiment 2. Errorbars denote 95% C.I. Plotted bars denote the response fractions pooled
across all surveyed links or pairs; numbers to the right denote counts of links or pairs where the majority of
responses to that individual link or pair agreed.

of the near distance (d = 2), unlinked pairs but were significantly less likely to approve cause-effect
pairs at high distance (z-test on proportions: z = −10.5,p < 10−25) (and workers were significantly
more likely to be uncertain about high distance pairs; z = 3.14,p < 0.002). While further study is
needed, these survey results do fit with our expectations if the data generated during Experiment 2
were of high quality, providing some evidence that the efficiency gains from our algorithms were
not offset by lower quality or at least lower consistency, as perceived by other crowd workers.

7 COMPUTATIONAL STUDY — BIAS AND ROBUSTNESS OF NETWORK
EXPLORATION

In this section we explore the differences between a true network and one derived from a sampling
procedure based on Iterative Pathway Refinement (IPR). We introduce a simplified computational
model to simulate workers generating pathways and apply this model within the IPR algorithm on
a known network topology to test IPR’s performance. As such, there are three components to this
computational study: (i) a model of the underlying graph being explored (Sec. 7.1), (ii) a model for
how crowd workers develop pathways taken from the underlying graph (Sec. 7.2), and (iii) a set
of network metrics to compare the true underlying graph with the sampled graph derived from a
finite number of worker pathways (Sec. 7.3). We describe the results of our computational study
using these components in Sec. 7.4.

7.1 Modeling the underlying network
We study two directed network models for the underlying graph Gtrue:

Random graph The directed analog of the undirected Erdős-Rényi (ER) graph [19]. Here
N nodes are introduced and each possible edge (i, j) exists independently with constant
probability p. To make this network directed, both edge (i, j) and (j, i) exist with probability
p, giving a maximum of 2

(N
2
)
possible edges.

Scale-Free graph The most common model for a scale-free graph is the Barabási-Albert (BA)
graph [4]. Here N nodes are introduced one at a time starting from a small seed graph. Each
new node attaches tom existing nodes with probability proportional to the existing nodes’
degrees. This leads to a rich-get-richer feedback mechanism as nodes with higher degree
receive more incoming links giving them higher degree still.
Traditionally, the BA model is taken as an undirected network. The most obvious way to
form a directed graph is where each newly introduced node i forms a directed link (i, j)
when it attaches to a preexisting node j. Unfortunately, this creates a “temporal” hierarchy
of newer nodes pointing backwards to older nodes, and makes it impossible for any local
search algorithm to explore the entire network. To address this, we instead model directed
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edges as being equally likely to point in either direction, i.e., when a new node i attaches to a
preexisting node j , directed edge (i, j) is created with probability 1/2, otherwise directed edge
(j, i) is added to the graph.

We took N = 1000, p = 5/999, andm = 3 to simulate these networks, and only consider the giant
connected component of Gtrue if it is disconnected.
The choice of these two model networks is meant to cover the extremes of possible degree

distributions of the underlying network Gtrue. If there is a strong dependence between the degree
distribution and the efficiency of exploration, then it is likely that custom exploration algorithms
will be needed for different networks. Conversely, however, if there is at most a weak dependence,
then that means the exploration algorithm we propose may be able to efficiently explore a general
class of networks.

7.2 Modeling pathway refinement
Given a true, latent network to be explored, we seek a simple model for how workers could reveal
that network structure via individual IPR microtasks. Network search models, where an agent
moves locally over a network exploring its structure, provide inspiration. Here we treat the pathway
refinement problem as one of a short-term local search of a network. A searcher, starting from a
randomly chosen node in Gsampled and respecting edge directions, takes a small number of moves
to connected nodes, either in Gsampled or in Gtrue. The trace of the searcher can then mimic a new
pathway generated by a worker proposing existing or novel terms.
Specifically, we model pathway generation using self-avoiding walks (SAW). A SAW on a

graph is a variant of a random walk where the random walker is constrained such that it cannot
visit the same node more than once [16, 24, 41]. Of course, independent SAWsmy overlap, traversing
some of the same nodes and links as other SAWs. Short-length SAWs can then represent causal
pathways that do not repeat terms—almost no pathways generated during Experiment 2 contained
duplicate terms (Sec. 5). Self-avoiding walks have good properties for efficiently exploring unknown
networks [1, 65], providing a theoretical underpinning for the IPR algorithm.
To simulate IPR exploring a latent network with this model, at each timestep a new pathway

is generated by an independent self-avoiding walker initialized at a node within Gsampled. This
walk proceeds for a number of steps L, and any new nodes or links the walker happens to travel
over—those in Gtrue not yet in Gsampled—are added to Gsampled. In our simulations, the length
of each pathway L was drawn from a shifted Poisson distribution with fixed mean λ = 1, i.e.
L ∼ Pois(λ = 1) + ℓ. We selected constant values of ℓ = 4, 6, 8 that bracket the mean path length
observed in Experiment 2 (see Fig. 6). The stochasticity introduced by this distribution is intended
to better mimic the variation in length of actual crowdsourced pathways, although the exact form
of the statistical model is not crucial. Further, choosing (constant) L = 1 corresponds to the Single
Link task studied in Experiment 1 (Sec. 3), so we can compare simulated IPR exploration with
Single Link exploration. This model can thus build Gsampled out of Gtrue over time by taking the
union of all the simple model pathways created, providing a plausible, though idealized, simulation
of the Iterative Pathway Refinement crowdsourcing phase.

7.3 Network exploration metrics
Suppose Gsampled is derived from simulating our IPR model (Sec. 7.2) until a total of |P | pathways
have been developed. To understand the effects of generating a network via this algorithm requires
comparing Gsampled with the true, latent network Gtrue. Of course, in practice Gtrue is unavailable
for such comparisons, but the synthetic analysis performed here helps us understand, in some
manner, the performance and properties of our crowdsourcing algorithm.
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To compare Gsampled and Gtrue we use the following network metrics:
Fraction of nodes and links observed Here we track how much of the underlying network
Gtrue is captured inGsampled by comparing the numbers of nodesN and linksM in the observed
graph with the sizes of the true graph: Nsampled/Ntrue andMsampled/Mtrue as functions of |P |.

Average degree We also track the mean indegree and outdegree ⟨k⟩ of nodes in Gsampled
compared with the same quantities for Gtrue. In the context of causal attribution networks,
indegree captures the number of causes an effect has, while outdegree captures the number
of effects that are due to a cause. This metric captures what portion of the neighbors of nodes
are retained by the sampling algorithm.

Betweenness centrality The betweenness centrality B(v) of a node v in G is the sum of the
proportion of all shortest paths that pass through v [10]:

B(v ;G) =
∑
s ,t ∈V

σ (s, t |v)

σ (s, t)
(1)

where σ (s, t) is the number of shortest paths connecting nodes s and t , and σ (s, t |v) is
the number of those paths passing through another node v (v , s , v , t ). To compare
Gsampled and Gtrue, we take the ratio Bsampled/Btrue using the mean node betweennesses
Bsampled =

1
Nsampled

∑
v ∈Vsampled B(v ;Gsampled) and Btrue =

1
Ntrue

∑
v ∈Vtrue B(v ;Gtrue).

The focus here is on relatively basic metrics that quantify global differences in the networks, but
many other network metrics and statistics are available. For example, one statistic commonly used
to quantify random walkers searching a network, particularly in the statistical physics literature, is
the mean first-passage time, measuring how long it takes an individual random walker to reach a
particular node [53, 65]. Yet, this measure is most suitable for a single random walk that moves
over the network, whereas our model focuses on the collective action of a large number of shorter
walks, so we instead focus on metrics suitable to quantifying the proportion of the true network
that has been revealed, and if and how properties of Gsampled differ from those of Gtrue.

7.4 Results
Figure 12 presents the results of our computational study (simulating 100 independent runs for each
combination of parameters). For both the random and scale-free networks, IPR was able to explore
the latentGtrue more quickly than the single link task: The fraction of nodes discovered, fraction of
links discovered, and average node degree all converged more quickly to their true values, especially
for longer average L. For example, IPR with ℓ = 4 revealed 90% of the nodes in the Scale-Free graph
on average with only ≈ 940 IPR tasks while over 4200 single link tasks were necessary to reach
the same proportion, a factor of 4.6 more tasks. Of course, longer pathways should necessarily
reveal the network more quickly, because each pathway provides more subnetwork structure, but
in practice this will be complemented by the faster speed of IPR workers per link observed in
Sec. 5.2.3. Overall, IPR is effective at exploring different types of networks.
Surprisingly, unlike the other metrics, the mean betweenness for Gsampled is generically higher

than it is for Gtrue. This reveals an important bias: short-duration explorations will over-report
the centralities of nodes, even though betweenness centrality (Eq. (1)) already accounts for the
total number of shortest paths in Gsampled. The origin of this bias is that there are fewer links
early on in the exploration, leading to fewer alternate shortest paths and so more paths will “flow”
through the currently observed shortest paths. As more nodes and links are added, new shortest
paths will appear, taking away some of the load carried by the existing shortest paths. Thus, a
crowdsourcer exploring a network should account for biases in betweenness centrality and possibly
other centrality measures. This biased overestimation of betweenness at low numbers of samples is
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Fig. 12. Convergence of Gsampled to Gtrue using the self-avoiding walk (SAW) model of IPR. The Single Link
(SL) learning baseline represents the task studied in Experiment 1 (Sec. 3).

far stronger for the single-link sampling method than for the IPR model, further emphasizing the
usefulness of the IPR method.

8 DISCUSSION AND FUTUREWORK
Establishing causal relationships is one of the most important and challenging tasks of science. This
work focused on crowdsourcing causal attribution networks, directed networks where links A→ B
denote that a term A is a cause and the term B is its effect. However, much of the methodology
contributed in this work can inform the exploration of other types of networks, for example,
surveying individuals and their social ties to map out a social network [23]. Many technical
networks can be explored if the participants possess the relevant expertise. A team of cardiology
researchers and bioinformaticians, for instance, could collaboratively build a network of gene
pathways related to cardiac arrest. Such domain-specific cases are an especially interesting avenue
to combine our network exploration method with statistical methods and data, such as gene
expression datasets for the cardiology example.

The crowdsourced causal attribution network derived by this study warrants further refinement,
by merging synonymous terms, filtering out unsupported links, “backfilling” incomplete portions
of the network as needed, and otherwise accounting for the human perceptual biases that influence
causal reasoning. Indeed, while our first experiment provided evidence that workers are generally
able to recognize true causal relationships, workers also make false positives, attributing cause and
effect relationships where none exist. Measuring and accounting for this bias remains an important
challenge when developing larger causal networks.
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Our multiphase network crowdsourcing algorithm enables indirect collaboration between
workers, as workers only interact with the responses given by previous workers when viewing
those responses as part of a subsequently constructed task. Direct collaboration, where teams of
individuals work together to build causal pathways, is an interesting area we plan to explore. This
approach may lead to better causal attribution data, novel information on how teams perform, and
improved understanding of the perceptual and attributional biases of causal relationships.

Iterative Pathway Refinement (IPR) is the core of our crowdsourcing algorithm. Our experiments,
followup survey, and computational study provide evidence that IPR can leverage crowdsourcing to
explore a large network relatively efficiently. IPR enabled workers to provide information efficiently
and is well motivated by prior theoretical work on exploring networks using self-avoiding walks.
Workers complete IPR tasks by modifying short linear causal pathways or chains. IPR is a special
case of the more general Iterative Motif Refinement (IMR), as these linear chains can easily
generalize to other types of motifs. Chains were chosen for IPR as they are relatively easy to
understand in the context of cause-and-effect, but other network motifs can be used as well.

Indeed, studying motifs as part of IMR is a particularly fruitful line of future research, as different
motifs may work best when exploring different types of networks, particularly when accounting for
differences in human judgment and perception across the different types of networks. For example,
a chain (dipath) may be most appropriate for a causal graph, while a triangle motif may be better
when crowdsourcing a social network, as triadic closure is one of the most important properties
of social networks [52]. If training data are available, one could even in principle use supervised
learning to determine the ideal motif for a given network automatically.
Iterative Pathway Refinement can also be improved in other ways. We focused on one of the

simplest possible forms of IPR, where existing pathways were chosen uniformly at random to
show to workers. Although the same pathway was prevented from being shown too frequently
(by limiting the total number of responses to a given pathway), IPR would be more efficient
still if existing pathways were selected for updating by incorporating our current understanding
of the quality or correctness of the given pathway. This would better distribute the crowd by
preventing repeated refinement of known good pathways and instead guide the crowd towards
those pathways that are the most fruitful to explore. Likewise, network-specific algorithms such as
IPR can be complemented by non-network crowdsourcing algorithms such as efficient response
aggregation strategies [15, 32, 40]. Algorithms that balance an exploration-exploitation trade-off,
such as Thompson sampling [12], are also likely to improve the exploration efficiency of IPR even
further.
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A MECHANICAL TURKWORKER INSTRUCTIONS
Here are the instructional pages AMT workers were shown before they accepted each type of HIT
comprising Experiment 2. Figure 13 shows the instructional page for workers asked to propose or
rank seed causes, Fig. 14(a) shows the instructional page for workers participating in the Greedy
Pathway Expansion phase, and Fig. 14(b) shows the instructional page for workers participating
in the Iterative Pathway Refinement phase. Figure 14(b) shows the contents of the collapsed
instructions box found in Fig. 4; the box was expanded for the instructional page but collapsed
by default during actual HITs. The “vote” phase shown at the bottom of Fig. 14(a) is also the task
interface used for the response quality survey (Sec. 6).

Proposed root causes (fill this in):

(Drag off the list to delete)

 Add to list  

Submit

We are interested in learning about chainschains of causes and effects.
For example:

"technology" causes "innovation" which causes "more efficiency" ...
is one such chain. Here, "technology" is the root cause of the chain.

We would like your feedback on what other root causes you think are worth
exploring.

What causes do you think may have very surprising or unintended or interesting effects?

Please propose three to five new root causes using the form below. Please no duplicates in the list and
do not include "technology". Thanks for your help!Thanks for your help!

• When you accept the HIT you may see a list of existing terms to rank instead of an
empty list to fill in.

• Please work on as many HITs as you like. Thanks for your help!

Fig. 13. Screenshot of the instructional page shown to Amazon Mechanical Turk workers before accepting
the Cause Proposal task that initialized Experiment 2.
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This HIT asks one of two types of questions.

This is the first type:

What is caused by "virus"?

Please describe the effect with 1 or 2 words only

(Required) How confident are you in your answer?

Please Select

Submit

We are trying to learn more about the relationships between causes and effects.

And this is the second type:

Do you think that "virus" causescauses "sickness"?

 Yes, it does.
 No, it does not.
 I am not sure.

(Required) How confident are you in your answer?

Please Select

Submit

We are trying to learn more about the relationships between causes and effects.

If you accept the HIT, you will only see one of these.

This is a preview of a HIT only. Click ACCEPT
HIT to begin.

(a) Greedy Pathway Expansion

Instructions

↓ FOO
↓ BAR
↓ BAZ

Chain of causes and effects: Drop any leftover terms here:

 Add to chain

Submit

This is a preview of a HIT only. Click ACCEPT
HIT to begin.
(This example does not show real termsreal terms for the causes and effects.)

We have found evidence for a chain of causes and effects, but we are
not sure it's correct.

The chain below says, roughly, that:

"FOO" causes "BAR" which causes ..."FOO" causes "BAR" which causes ...

The chain below these instructions can be rearranged with your mouse.

Please reorder the chain as needed using your best judgment about
these causes and effects.
You can add new items using the text box.
Incorrect or redundant items can be removed by dragging them over
to the right.
Please make at least one change to the chain. If you think the
chain already looks good, try adding something to the beginning or
ending!

When you think the chain of causes and effects is most meaningful, just click
submit! Thanks for your help!

(b) Iterative Pathway Refinement (cf. Fig. 4)

Fig. 14. Screenshots of the instructional pages shown to Amazon Mechanical Turk workers before accepting
(a) Greedy Pathway Expansion tasks and (b) Iterative Pathway Refinement tasks. For GPE tasks, a worker
will be asked to either propose a new effect or to validate an existing cause-effect pair, depending on the state
of the algorithm, and so worker instructions cover both tasks.
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