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Abstract

Large-scale disasters that interfere with globalized socio-technical infrastructure, such as mobility and transportation
networks, trigger high socio-economic costs. Although the origin of such events is often geographically confined, their
impact reverberates through entire networks in ways that are poorly understood, difficult to assess, and even more difficult
to predict. We investigate how the eruption of volcano Eyjafjallajökull, the September 11th terrorist attacks, and
geographical disruptions in general interfere with worldwide mobility. To do this we track changes in effective distance in
the worldwide air transportation network from the perspective of individual airports. We find that universal features exist
across these events: airport susceptibilities to regional disruptions follow similar, strongly heterogeneous distributions that
lack a scale. On the other hand, airports are more uniformly susceptible to attacks that target the most important hubs in
the network, exhibiting a well-defined scale. The statistical behavior of susceptibility can be characterized by a single scaling
exponent. Using scaling arguments that capture the interplay between individual airport characteristics and the structural
properties of routes we can recover the exponent for all types of disruption. We find that the same mechanisms responsible
for efficient passenger flow may also keep the system in a vulnerable state. Our approach can be applied to understand the
impact of large, correlated disruptions in financial systems, ecosystems and other systems with a complex interaction
structure between heterogeneous components.
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Introduction

The infrastructure that supports the flow of assets, energy,

information and people at all scales often operates near maximum

capacity, accentuating the vulnerability of socio-technical systems

[1]. Even partial failure due to error, interference from environ-

mental conditions, or malicious attacks [2–4] can lead to massive

economic losses and social disruption. This infrastructure also has

the unintended consequence of facilitating the rapid spread of

emergent infectious diseases [5,6] and intentional shutdown could

become necessary to impede transmission [7,8]. Modeling these

systems as complex networks [9–12] we investigate methods for

assessing their resilience to large-scale disruptions. Resilience of

networks to both random failure and targeted attacks has been

widely studied [2,13–17]. However, there has been little investi-

gation of system resilience to real disasters [18] which generically

fall outside of these theoretical benchmarks. It remains unclear

how natural events differ from idealized model systems, how they

differ from one another and what features they share.

Here, we investigate how two large-scale disasters impact global

mobility through disruptions of the worldwide air transportation

network (WAN) [19–21]: the 2010 eruption of the Icelandic

volcano Eyjafjallajökull and the terrorist attacks of September

11th, 2001 (illustrated in Figs. 1a and 1b respectively). Although

these events only closed airports within bounded geographical

regions, their effects echoed throughout the global traffic network

and generated large economic losses everywhere. The Interna-

tional Air Transport Association estimated that airlines alone lost

more than 1.7 billion USD in the six days following Eyjafjallajö-

kull’s eruption, and approximately 10 million passengers were

affected [22]. However, theoretical percolation approaches that

focus on the topological integrity of a network and which are

frequently used to understand network resilience [13,14] fail to

capture this marked socio-economic impact because neither event

compromised the global integrity of the WAN (see Text S1 Sec.

S4.1). In fact, the effects of these events vary widely between

airports and regions; while some areas function close to normal,

others may be all but obliterated.

To successfully capture this impact and explain its variability,

we employ the concept of node-specific perspectives of the network

[23] and of effective distance. The essence of our approach is

illustrated in Fig. 1c, d which shows the most efficient routes from

the perspective of two different reference airports, Mumbai (BOM)

and Panama City (PTY). Most traffic is routed through central

gateway airports, such as Heathrow (LHR) or Miami (MIA).

When these gateway airports close due to a disruption such as the

volcanic ash cloud or 9/11, efficient routes change and a new set

of airports become Mumbai’s (or Panama’s) primary access points.

Therefore the overall effective distance from each one of these two

airports to the rest of the world increases.
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Using this view we capture at fine granularity how the impact of

disruptions varies across different locations. We find that the

susceptibility of an airport to a specific disruption is inversely

related to the number of connections at the airport since these

provide routing flexibility. Therefore, susceptibilities to real events,

geographical events and random events follow similar, highly

heterogeneous statistical distributions. However, because global

routing relies heavily on a set of core airports, susceptibilities to

attacks that target only this core are more uniform. Our approach

captures and enables us to explain the degree of heterogeneity in a

system’s response to disruptions, a previously overlooked yet key

Figure 1. Quantifying the impact of disasters on the worldwide air transportation network (WAN). (a) The ash cloud led to the closure of
more than 100 airports in the WAN. These closures interrupt all the routes shown in red, which account for 20.5% of total traffic. (b) The 9/11 terrorist
attacks closed more than 200 airports, interrupting 37.7% of total traffic. (c) The shortest-path tree rooted at Mumbai (BOM) before (left) and after
(right) the ash cloud closures. This tree captures the expected routes passengers take for trips originating at Mumbai (BOM). The ash cloud ‘‘pulls’’ the
world away from Mumbai (BOM), increasing its effective distance to other airports as illustrated by the histogram of distances on the right. Blue and
red correspond to distributions before and after the disruption, respectively. Horizontal lines mark the mean effective distance. An airport’s size in the
tree indicates how many other airports are reached from Mumbai (BOM) by traveling through that airport. We see that Heathrow is typically
Mumbai’s gateway to the world. When Heathrow is removed a new set of hubs become Mumbai’s (BOM) primary access points. (d) From the
perspective of Pananama City (PTY), a similar increase in effective distance is caused by the 9/11 closures, when Miami (MIA) is replaced by Bogota
(BOG) as the gateway to the world.
doi:10.1371/journal.pone.0069829.g001
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factor in the vulnerability of the WAN and other infrastructural

networks that support heterogeneous flows.

Results

The worldwide air transportation network (WAN) is the global

network of airports that are connected through direct flights.

Approximately 3.1 billion passengers travel through this network

per year. A connection wij between airports i and j represents the

total number of passengers traveling between these airports in a

year (see Text S1 Sec. S1 for more detailed information on the

WAN dataset). The flux fi of airport i is the total traffic traveling

through it: fi~
X

j
wij , while airport degree ki is the number of

other airports to which i has direct flights: ki~
X

j
aij , where

aij~1ifwijw0 and aij~0 otherwise.

We model the impact of Eyjafjallajökull and 9/11 on the WAN

by removing the same set of airports that were closed in response

to these events (see Text S1 Sec. S2.1) together with the non-stop

flights to and from these airports. Our method captures the

dynamic re-routing of passengers at functional airports to avoid

obstructed multi-stop connections through airports that close. At

their peak, on April 16th 2010, the closures due to Eyjafjallajö-

kull’s ash cloud interrupted 20.5% of the total traffic and closed

10.5% of all airports. The closure of American and Canadian

airspace as a response to the 9/11 attacks was even more severe,

removing 37.7% of air traffic and 19.6% of all airports. In light of

these disruptions, how well can the remaining airports sustain

global connectivity and how does susceptibility vary across

different airports and regions?

Common network diagnostics are the distributions of flux f ,

degree k and more sophisticated centrality measures such as

betweenness b [9], the number of most-efficient paths between all

other node pairs that traverse a node. In a large variety of

networks, in particular mobility and transportation networks

including the WAN, centrality measures are broadly distributed

reflecting the strong structural heterogeneity of the network

[24,25]. A plausible approach to assess the impact of a natural,

large-scale disruption is to measure systematic changes in the

distributional form of these standard centrality measures. Howev-

er, we find that the functional form of degree, flux, and

betweenness distributions is surprisingly robust to these disruptions

as illustrated in Fig. 2. Thus, changes in said distributions are not

suitable for assessing the impact of these disasters.

On the other hand, from the perspective of individual airports,

changes in the efficiency of network connectivity are apparent as

we have seen in Figs. 1c, d. In addition to taking a node’s

perspective, the key element of our approach is to measure the

increase in effective distance [26] due to this decay in connectivity.

Effective distance is based on the intuitive notion that strongly

connected nodes are effectively ‘‘closer’’ than those that are

connected by a weak link. More specifically, we first define the

effective length l of a path that starts at node i0 and ends at ik,

passing through intermediate nodes i1, . . . ,ik{1:

‘(i0, . . . ,ik)~
Xk{1

n~0

1

wininz1

: ð1Þ

Given the set C(i,j) of paths that connect nodes i and j we define

the effective distance dij as the length of the shortest path between

them:

dij~
1

N min
C(i,j)

‘(i, . . . ,j), ð2Þ

where the normalization is arbitrary and chosen such that the

global mean effective distance in the intact network is vdw~1.

Note that two airports that have a weak direct connection may

nonetheless have a small effective distance between them if they

have a strong multi-stop connection.

For each pair of airports we denote the change in effective

distance as Ddij~d
0

ij{dij , where prime indicates quantity after a

disruption. Note that the effective distance between two airports is

only defined when they are connected. Thus, we will only take into

account changes in effective distance between a pair of airports i

and j if they remain connected after a disruption.

In order to understand the nature and effects of natural

disruptions we compare them to synthetic control scenarios of

comparable overall magnitude, controls A and B corresponding to

the ash cloud and 9/11, respectively. We classify controls as

random: airports are equally likely to be removed, targeted:

airports are chosen in order of decreasing centrality according to

degree, flux, and betweenness, and geographic: airports are

closed based on spatial distance from a given epicenter.

Interestingly, we find that although the 9/11 disruption was

more severe in terms of overall traffic reduction, the ash cloud

event pulled the world farther apart. For instance, the mean shift

in effective distance over all pairs of airports SDd=dT is

approximately 0.557 following the ash cloud vs. 0.0923 following

9/11. To quantify the relative size of their impact, we compare the

shift SDd=dT in the two real events to randomly selected synthetic

geographic disruptions that remove comparable amounts of traffic.

We find that the ash cloud disruptions are exceptionally strong

(only 14% of synthetic disruptions exhibit a greater shift) while the

9/11 attacks are slightly weaker than expected (up to 60% of

synthetic disruptions exhibit a larger shift). Furthermore, large-

scale geographically clustered disruptions exhibit large global shifts

Figure 2. Network properties before and after natural disruptions. (a–d) Relative frequencies of standard network measures: link weight w,
node flux f , degree k, and betweenness b. The functional form of the probability distributions are largely unaffected by the events under
consideration.
doi:10.1371/journal.pone.0069829.g002
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only when they shut down Western Europe. Although this is partly

due to the density of high-betweenness airports in this region,

betweenness alone cannot explain the exceptional sensitivity to the

closure of European hubs (see Text S1 Sec. S4.3 for more details).

Global shifts contain no information about how the suscepti-

bility to a given disruption varies across different airports and

regions. To capture this aspect of network resilience we instead

quantify impact from the perspective of individual airports. In

Figs. 1c, d we can clearly see that the change of distance along

shortest paths from Mumbai (BOM) and Panama (PTY) varies

from one airport to another. In geographical disruptions we expect

that because of the underlying spatial and political constraints

[19,27] variation will partly follow geopolitical boundaries. This is

in fact what we see in Fig. 3a, b which shows the distance shift

from individual airports to different geopolitical regions. Gener-

alizing this idea to capture the distance shift between pairs of

geopolitical regions reveals that the impact of the ash cloud

closures had a greater geographical scope than the 9/11 closures

(see Fig. 3c, d).

Despite these fine-grained differences between disruptions, a key

question is whether impact magnitude follows general and possibly

universal distributions due to the underlying network structure.

The overall impact at an airport i is given by the change in its

typical effective distance to all other airports. We define an

airport’s susceptibility by

xi~mi(d
0
){mi(d), ð3Þ

where mi denotes the median of the distribution of dij for fixed i,

and the prime denotes the situation after the disruption. Again, for

each i we only consider the set of airports to which it is connected

before and after the specific disruption.

Interestingly, we find that in natural disruptions as well as the

synthetic control scenarios, the distribution of airport susceptibil-

ities p(x) has a broad tail that can be described by

p(x)*x{(1zk), ð4Þ

as shown in Fig. 4a, b. (For statistical tests supporting the

plausibility of this power-law distributional form see Text S1 Sec.

S5.3.) Different types of disruption scenarios exhibit different tail

exponents k: all high-centrality targeted attacks exhibit a similar

scaling exponent kcentral&2 yet the distribution of susceptibility to

the natural events is broader, with kreal&1. This means that the

latter generate more variable impact. Impact distributions of

synthetic, geographically confined disruptions possess exponents

similar to the natural events (Fig. 4b), as we would expect given the

geographical coherence of natural disruptions. Note that the

scaling exponent in random disruptions is also comparable to

natural and geographical events (Fig. 4b). Thus, disruptions with

very different geographical structures can have similar distribu-

tions of susceptibility, suggesting that this behavior cannot be

explained by geographic characteristics alone.

What are the network properties that can account for the

observed behavior under different types of disruptions? Generi-

cally, in networks with broad weight and degree distributions, only

a small subset of links make up the essential connectivity structure

[23,28]. In hierarchical networks [29] such as the WAN, these

connections are generally those that channel efficient navigation

from the periphery of the network to the core, along increasingly

central airports [20]. This essential backbone is of the order of the

number of nodes in the network and it is tree-like away from the

core [23]. At an individual airport this will lead to a heterogeneous

distribution of most-efficient paths across its links. This structural

heterogeneity governs the behavior of impact. To understand how,

Figure 3. The geographical distribution of impact in real-world disruptions. (a, b) The panels depict percent airport-to-region distance
shift, i.e. the median change in effective distance from a given airport to all airports in a specific region. An airport’s shift profile reveals fine-grained
information about the regional structure of its connections. For instance, shifts are generally larger for airports geographically close to the disruption
epicenter, indicating strong within-region connections. We also see more idiosyncratic features, for instance, Madrid is close to the ash cloud
epicenter but exhibits a relatively small shift from Latin America because it is strongly connected to it. (c, d) Panels depict percent inter-regional
distance shift, i.e. the median change in effective distance from all airports in a specific region to all those in a second region. When the ash cloud
shuts down many European airports, Europe predictably experiences a strong distance shift throughout. More interestingly, Africa experiences a
comparable shift and all regions shift away from geographically distant regions. Meanwhile, shifts due to the 9/11 closures are confined to North and
Central America, evidence that European hubs are more crucial to inter-regional connectivity.
doi:10.1371/journal.pone.0069829.g003
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we will identify the subset of essential connections using the high-

salience skeleton [23], a method designed specifically for this

purpose.

Consider an airport that remains open following a disruption. If

this airport loses a link in the high-salience skeleton due to a

disruption that closes the destination of that link, we say that this

airport experiences direct impact. Impact due to changes further

removed from the airport is referred to as indirect. Both types of

impact can contribute to an airport’s susceptibility:

xi~xi,indirectzxi,direct.

In disruptions that remove a non-negligible number of airports,

such as those we consider, all airports experience indirect impact.

We expect that indirect susceptibilities are approximately uniform

since these changes typically occur far away, affecting a small

number of routes. This implies that airports that do not experience

direct impact are approximately uniformly susceptible

xi&xi,indirect&x0. We confirm this in Figure 5a. Since suscepti-

bility is a change of effective distance, x0 can be interpreted as the

typical distance change from the network core to all other airports

(see Text S1 Sec. S7 for more explicit calculations and discussion).

The situation is more subtle for airports that are directly

affected. Following a disruption these airports rely on their

remaining direct connections to mitigate the loss of crucial direct

connections. Assuming that an airport’s rerouting flexibility, i.e.

the number of existing links across which rerouted traffic can be

distributed, increases with degree, we expect that susceptibility

decreases with degree. This reasoning is confirmed in Fig. 5b,

which shows that

xdirect(k)*k{m with m&1: ð5Þ

Based on this scaling relation and the degree distribution we

expect xdirect to be distributed according to

p xdirectð Þ*x
{(1z1=m)
direct ð6Þ

(this simple scaling argument is detailed in Text S1 Sec. S8). Given

that 1=m&1, this is consistent with the empirical finding

corresponding to natural, geographical and random disruptions

shown in Fig. 4, and thus the rerouting flexibility captured by

airport degree suffices to explain the distribution of susceptibilities

to these events.

However, the above scaling argument fails to explain the

distribution of impact following targeted attacks. The argument

rests on the assumption that the direct impact dominates.

Targeted attacks cripple the core of the network, shutting down

Figure 4. Distributions of airport susceptibility. (a) The cumulative probability distributions P xwx=x0ð Þ capture the strong impact
heterogeneity across airports in all disruptions. Susceptibilities to real scenarios are more broadly distributed than in attacks targeting central airports.
Dashed lines mark power laws P xwx=x0ð Þ*(x=x0){kwithk~2andk~1. (b) Same as panel (a) for the ensembles of geographical and random
disruptions and attacks that target high-centrality airports (for details see Text S1 Sec. S5). The ensembles of random an geographical disruptions
follow a similar scaling to the real-world disruptions (k&1) while the targeted attack ensembles scale like individual high-centrality disruptions (k&2).
doi:10.1371/journal.pone.0069829.g004

Figure 5. The degree distribution drives direct susceptibility. (Error bars indicate +1 se.) (a) Susceptibility x as a function of airport inverse
degree k for directly and indirectly affected airports in a random disruption. We observe a clear difference in behavior between airports that lose a
crucial link (direct impact) and those which experience only indirect impact. Direct impact increases as k decreases, while indirect impact is
approximately constant. Solid lines denote the averaged trend. (b) Direct susceptibility xdirect~x{x0 of directly affected airports as a function of
inverse degree reveals the scaling xdirect*k{mwherem&1.
doi:10.1371/journal.pone.0069829.g005

Large-Scale Disasters and Worldwide Mobility

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e69829



multiple connections that are critical for long-range travel, in this

way indirectly impairing efficient routes to and from most airports.

Thus, contrary to the assumption above, indirect susceptibility

dominates, yielding a more homogeneous distribution of x (i.e. a

larger tail exponent k).

To characterize this increased homogeneity in centralized

attacks we need to determine how the impact at an airport affects

others indirectly. Let the dependents of an airport i be the airports

that rely on i to access most of the network (at least half of the total

N airports). If i experiences direct impact, many routes from any

one of its dependents will be disrupted. These dependents can in

principle find another gateway to replace i, but even after damage

i will typically continue to provide the most efficient connection.

Thus we expect that rerouting flexibility at i will indirectly affect

travel from its dependents and in the absence of other effects they

will exhibit approximately the same susceptibility as i. We verify in

Fig. 6a that the dependents of an airport do on average exhibit the

same susceptibility as their gateway.

Interestingly, we find that the number of dependents is

approximately the per-airport betweenness centrality b=N (see

Fig. 6b). This relationship holds because the WAN has a tree-like

backbone of efficient connections (if all of a dependent’s most

efficient routes go through the same gateway this relationship is

exact; see [30] and Text S1 Sec. S9.1). Both the number of

dependents and betweenness increase with airport degree k
according to

s*b*kc with c&1 ð7Þ

as shown in Fig. 6c. Using this scaling, the probability that a

randomly chosen airport will be a dependent of an airport of

degree k is proportional to kcp(k). Each one of these dependents

exhibits approximately the same susceptibility (indirectly) as this

gateway does directly, and a simple calculation (detailed in Text

S1 Sec. S9.2) yields the distribution of indirect susceptibilities,

which dominate the full susceptibility distribution:

pcentral(x)*x{ 1z
1zc

m

� �
, ð8Þ

where (1zc)=m&2. This result is consistent with the observed tail

exponent k&2 in targeted disruptions (see Fig. 4). Intuitively, Eq.

(8) tells us that because betweenness centrality b increases with the

degree k of a node (cw0), the network’s dependence structure

makes large variations in susceptibility less likely when the core of

the network is targeted, narrowing the distribution of susceptibil-

ities.

Different infrastructural networks can in principle exhibit

different betweenness-degree centrality scalings [31]. The specific

scaling relation in the WAN, captured by Eq. (7), together with Eq.

(8) means that the system’s response to geographical and random

disruptions is qualitatively different from the response to disrup-

tions that target central airports. To see how, consider that

following the distributional form in Eq. (4), the variance scales (to

leading order) with the sample size N according to

Sx2T*N (2{k)=k [32]. Thus, when kv2 the variance diverges as

N??. A generic exponent k~1 for natural disruptions (as well

as geographical and random) implies they lack a scale. On the

other hand, for targeted attacks in a network where the number of

dependents increases sufficiently quickly with node degree to

satisfy c§2m{1, the variance converges. In the WAN c&m&1
and thus targeted disruptions have a finite scale.

Discussion

We have characterized the effects of disruptions to the WAN on

worldwide mobility using simple scaling arguments based on basic

network properties. This reveals not only how the system responds

to large-scale disruptions, but what key properties of the system are

necessary to predict and explain this response. Furthermore, this

analysis suggests some avenues for improving the resilience of

global mobility to these disruptions. The WAN does not depend as

heavily on physical infrastructure as other networks (e.g. the power

grid). Thus, potential increases to the resilience and efficiency of

the mobility it sustains could be implemented more rapidly

through changes to airline scheduling.

We find that the Eyjafjallajökull event had an anomalously

strong impact on worldwide mobility because the Western

European airports forced to close provide irreplaceable connec-

tivity between distant regions. This dangerous vulnerability can be

minimized by introducing more high-traffic, inter-regional con-

nections between non-European airports. Many of these connec-

tions are underutilized or nonexistent despite the lack of clear

physical or logistical constraints.

We also discover that the structure of the WAN generates a

tradeoff between the magnitude of local effects and their global

reach. Peripheral airports are on average highly susceptible to

direct impact because they rely strongly on a small number of links

and have limited routing flexibility, but their indirect effect on

other airports is negligible. Conversely, core airports are less

Figure 6. The distribution of indirect susceptibility is governed by the dependence structure. (Error bars indicate +1 se.) (a) The
susceptibility xi of an airport i is approximately equal to the average susceptibility of its dependents vxjwj[Si

when the dependents are not directly

impacted (solid circles). Consistent with our model of how impact spreads, when dependents are directly impacted (empty circles) their direct impact
dominates, most notably in random disruptions. (b) The number of dependents s of an airport is approximately equal to its betweenness centrality b
divided by the number of nodes N . (c) Thus, both s and b scale with degree k according to s*b*kcwherec&1.
doi:10.1371/journal.pone.0069829.g006
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susceptible to direct impact given their high connection redun-

dancy, but many others are indirectly affected through them. Thus

the network core is more resilient than the periphery. Even when

events heavily target and damage the core, there is a well-defined

impact scale that can be used to anticipate the consequences of

these events. On the other hand, the impact of geographical and

random events does not have a scale and is therefore harder to

predict. These findings suggest that to optimize the resilience of

worldwide mobility it may be necessary to look beyond the hub

airports and reduce the susceptibility of peripheral airports, for

example by distributing their traffic over a wider range of

connections, spanning locations as geographically widespread as is

economically and logistically feasible. Although this may compro-

mise the efficiency of operations under normal conditions it may

nonetheless pay off if geographical disruptions occur frequently.

Future work should investigate how to restructure connectivity or

build excess capacity for contingency re-routing in a way that

balances efficiency under normal operations with the risk posed by

these disruptions. Another important future avenue is to investi-

gate network designs that do not exhibit a tradeoff between

efficiency and resilience.

Beyond mobility and transportation networks, the framework of

effective distance and a node’s perspective can be used to assess

and optimize the resilience of other systems with heterogeneous

flows. For example, the interplay of direct and indirect impact

could help understand how diversification by different players in a

network of financial flows affects the complex tradeoff between

systemic and individual risk [33].
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