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Abstract

In 2001, Rama Cont introduced a now-widely used set of ‘stylized facts’ to synthesize empirical
studies of financial time series, resulting in 11 qualitative properties presumed to be universal to
all financial markets. Here, we replicate Cont’s analyses for a convenience sample of stocks drawn
from the U.S. stock market following a fundamental shift in market regulation. Our study relies
on the same authoritative data as that used by the U.S. regulator. We find conclusive evidence in
the modern market for eight of Cont’s original facts, while we find weak support for one additional
fact and no support for the remaining two. Our study represents the first test of the original set
of 11 stylized facts against the same stocks, therefore providing insight into how Cont’s stylized
facts should be viewed in the context of modern stock markets.
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2 BACKGROUND

1 Introduction

Researchers for decades have sought and proclaimed to have found various ‘stylized facts’ to charac-
terize the high-level behavior of financial markets. These ‘facts’ are then used to inform and justify
models of these markets. One of, if not the most widely attributed set of stylized facts of financial
markets was written by Rama Cont and published in 2001 [?].

Cont presented a list of 11 stylized facts on price variations (returns) in financial markets [?]. Cont’s
review summarized research ranging over the decades prior, noting seemingly common qualitative
characteristics of asset returns across different markets and time frames. It has not been established,
however, whether these qualitative characteristics still hold for modern markets and whether they
should all be expected to hold for individual stocks for a given time period. In this study, we examine
the most granular trading data publicly available over the time period of 18 Oct. 2018 – 19 Mar. 2019,
testing whether a stock in the modern market should be expected to express Cont’s 11 stylized facts.
We find clear support for eight of the stylized facts, with weak support for one other, as summarized
in Table ??. Section ?? provides further motivation and background for the study. Section ?? details
our data and methodology for testing the stylized facts. Section ?? gives the results of these analyses,
and, finally, Section ?? summarizes takeaways from our results.

2 Background

Cont’s stylized facts drew numerous past results of Cont and others [?] over the second-half of the
1900’s into the early 2000’s. Some of the facts were demonstrated through results in the paper, others
cited past results, and a couple (detailed in Section ??) do not appear to have been directly cited or
reproduced in the paper. Cont’s review has been frequently used to benchmark the empirical relevance
of agent-based models to real-world financial markets [?]. Cont himself was involved in these efforts
[?], and numerous ABMs have similarly replicated multiple stylized facts [?][?][?][?]. More recently
Katahira et al. [?] gave a ‘speculation game’ model with results reproducing 10 of the 11 facts (all
except Fact #3: Gain/Loss Asymmetry). In [?] and [?], the stylized facts were used to determine
which parameters produce realistic return series. An assumption implicit in these practices is that
most if not all of the stylized facts should hold for a given return series.

Since Cont’s set of stylized facts drew from a variety of results and research groups, no single asset
(exchange rate, stock, index) was used for all 11 facts [?]. The most facts tested by a single study
that we have found is eight, done by Chakraborti et al. [?] in their review on econophysics. They
gave details of Facts #1, 2, 4, 5, 6, 7, 8, and 10, providing example results for each of these using
intraday returns on the French stock BNPP.PA from 1 Jan. 2007 – 30 May 2008. Determining the
extent to which each of the stylized facts should be expected to hold for a given asset is important
for understanding how the facts should be used in practice. If any given asset over some time period,
which can be viewed as a singe-path realization of a stochastic process, cannot reliably be expected
to exhibit all 11 facts, alternative interpretations should be considered. Perhaps stocks on average
will exhibit all 11 properties, in which case comparing the expected value of a model’s results to the
expected value from empirical data could be more appropriate1.

How the stylized facts are exhibited under different constructions of time is also important to
establish. Clock-time, meaning time as measured by a timestamp or date, is most widely represented
in the stylized facts literature. As noted by Chakraborti et al. [?], this view inherently involves
sampling, and the number of trades in a unit of time can vary widely period-to-period and stock-to-
stock (Table ??). Event-time, using trades as the event in our case, smooths this variability out, with
one trade occurring per unit of time. An event-based view of time is also natural in the context of
market simulations, making any differentiation between the stylized facts in clock-time versus event-
time crucial to understand when benchmarking these models.

2.1 Cont’s Stylized Facts

Below are Cont’s stylized facts as given in [?]:

1This is the approach taken by Farmer et al. to validate their ‘Zero-Intelligence’ model [?]
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2.1 Cont’s Stylized Facts 2 BACKGROUND

1. Absence of autocorrelations: “(Linear) autocorrelations of asset returns are often insignifi-
cant, except for very small intraday timescales (≈ 20 minutes) for which microstructure effects
come into play.”

2. Heavy tails: “The (unconditional) distribution of returns seems to display a power-law or
Pareto-like tail, with a tail index which is finite, higher than two and less than five for most
data sets studied. In particular this excludes stable laws with infinite variance and the normal
distribution. However the precise form of the tails is difficult to determine.”

3. Gain/loss asymmetry: “One observes large drawdowns in stock prices and stock index values
but not equally large upward movements.”

4. Aggregational Gaussianity: “As one increases the timescale ∆t over which returns are cal-
culated, their distribution looks more and more like the normal distribution. In particular, the
shape of the distribution is not the same at different timescales.”

5. Intermittency: “Returns display, at any time scale, a high degree of variability. This is quan-
tified by the presence of irregular bursts in time series of a wide variety of volatility estimators.”

6. Volatility clustering: “Different measures of volatility display a positive autocorrelation over
several days, which quantifies the fact that high-volatility events tend to cluster in time.”

7. Conditional heavy tails: “Even after correcting returns for volatility clustering (e.g. via
GARCH-type models), the residual time series still exhibit heavy tails. However, the tails are
less heavy than in the unconditional distribution of returns.”

8. Slow decay of autocorrelation in absolute returns: “The autocorrelation function of abso-
lute returns decays slowly as a function of the time lag, roughly as a power law with an exponent
β ∈ [0.2, 0.4]. This is sometimes interpreted as a sign of long-range dependence.”

9. Leverage effect: “Most measures of volatility of an asset are negatively correlated with the
returns of that asset.”

10. Volume/volatility correlation: “Trading volume is correlated with all measures of volatility.”

11. Asymmetry in timescales: “Coarse-grained measures of volatility predict fine-scale volatility
better than the other way around.”

Financial returns were overall found to be heavy-tailed, not iid, and characterized by correlations
and clustering in behavior. Price changes themselves are not claimed to be predicted by any of the
stylized facts. Magnitudes of changes, seen as measures of volatility, are found to have nontrivial
correlations and relationships with previous behavior. The lack of clear persisting signal on the raw
returns is detailed in Fact #1, measured as a lack of linear autocorrelation in returns. This fact is
reproduced in the stylized facts paper for event-time returns of the stock KLM and for the USD/Yen
exchange rate. Nonzero autocorrelation function (ACF) values at the first lag are found in these
and many other intraday results in general, with possible explanations proposed such as the ‘bid-ask
bounce’, nonsynchronous trading effects, and partial price adjustment [?]. The effect is found to decay
to roughly zero within 15-minutes by Cont and others in [?][?][?].

Some nonlinear transformations of returns, such as taking their absolute or squared values, provide
measures of the magnitude of price changes. These volatility measures are found to exhibit persistent
positive autocorrelation, in contrast to the linear ACF just discussed. Cont et al. [?][?] found the
absolute 5-minute returns of S&P 500 futures to have ACF values starting above 0.1 and not going
below zero for at least 100 lags. Similar results were found in [?][?][?][?][?]. Explicit power-law fits are
given for the decay of autocorrelation in squared and absolute returns in [?][?][?]. Power-law decay of
absolute autocorrelation implies volatility exhibits long memory or is ‘long-range correlated’, and we
would also in that case expect the correlation to not go to zero or below as the lags increase [?].

The variability of returns is well documented and leads to the second stylized fact: return dis-
tributions’ heavy tails. Trying to determine the precise distributional form of returns and their
tails is a ‘favorite pastime’ (as Cont put it) in the literature [?][?][?][?]. Consistently agreed upon
[?][?][?][?][?][?][?][?][?][?], however, is that returns exhibit kurtosis, the fourth central moment, greater
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2.1 Cont’s Stylized Facts 2 BACKGROUND

than that of a normal distribution. Excess kurtosis indicates a distribution has heavier tails and a
higher peak than a normal distribution [?]. The financial ABM literature since 2001 has also frequently
reported the excess kurtosis of simulated returns to argue the empirical relevance of a model.

In empirical results, returns were found to be leptokurtic for timescales up to multiple days, but
kurtosis was found to decrease overall with timescale [?][?][?][?][?][?]. This property of ‘aggregational
Gaussianity’ (Fact #4) was shown by Chakraborti et al. [?] to occur more quickly in trade-time
than in clock-time, explained as trade-time correcting for some volatility versus clock-time returns.
Tail-heaviness decreasing but not necessarily disappearing through methods of volatility correction
is summarized in Cont’s 7th stylized fact, ‘conditional heavy tails’. Bollerslev et al. [?] detail the
‘kurtosis problem’ of fat-tails remaining in the residuals after applying ARCH-type models to stock
returns. In [?], Andersen and Bollerslev normalized 5-minute DEM/USD FX returns by an estimate
of the average daily volatility pattern and reduced the kurtosis from 21.5 to 15.8. Andersen et al. [?],
however, found nearly normal kurtosis values for 5-minute returns of 30 DJIA stocks after normalizing
by their respective realized daily variances.

Taken together, returns’ heavy tails and volatility clustering lead to the characteristic of returns
irregularly displaying periods of high volatility interspersed with long periods of relative calm. This
‘intermittency’ is Fact #5, and in much of the literature it is discussed as being visibly apparent in
the returns series [?][?] or following directly from these other facts [?]. Cont [?] discusses the multi-
fractal model as a possible explanation of intermittency, suggesting possible multiplicative processes
operating across multiple timescales. Arneodo et al. [?] provide evidence of this, particularly arguing
for a multiplicative cascade of information from coarse timescales to finer timescales. Müller et al.
[?] presented evidence of this ‘asymmetry in timescales’ effect (Fact #11) in 1997 with a different
methodology. They calculated fine volatility as being the average absolute daily return over a given
week and coarse volatility as the absolute price change over the full weekly interval. They measured
the correlation between fine volatility and lagged coarse volatility with lags τ of -1, 0, and 1, finding
the correlation at τ = −1 to be larger than at τ = 1. In similar analysis, Gençay et al. [?] found low
volatility at a long timescale was likely to be followed by low volatility at a shorter timescale whereas
high volatility did not necessarily show this same ‘vertical dependence’.

Two other correlational findings are given by Facts #9 and 10. In #9, the ‘leverage effect’ expects
volatility to be negatively associated with returns. Citing results from Bouchaud et al. [?] and
Pagan [?], Cont specifically describes this effect as showing a negative correlation between returns and
subsequent squared returns, suggesting negative returns lead to increased volatility. Correlation of
volatility with subsequent returns was found to be negligible, meanwhile. Variations of this effect have
been noted elsewhere in the literature, however, and negative (or even nonzero) correlation between
returns and observed volatility is not always found [?].

In Fact #10, volatility is found to be positively correlated with trading volume. Clark [?] noted
this relationship as far back as the 1970’s when examining cotton prices. The relationship has been
measured over the years through various means, including taking the correlation between shares traded
and absolute returns over a period of time [?] and measuring return variance as a function of trades
[?][?][?][?]. It has also been proposed that long-range autocorrelation of trading volume leads to
volatility clustering [?].

Finally, ‘gain/loss asymmetry’, the 3rd stylized fact, is perhaps the least clear to interpret from
the detail given by Cont [?]. This was summarized as larger drawdowns being seen than upward
movements for stock prices and index values. It is possible this is referring to results given in [?]
showing negative skewness for S&P 500 futures, Dollar/DM Futures, and Dollar/Swiss Franc futures,
each at 5-minute timescales. Skew implies something slightly different from the fact as summarized by
Cont, however, as it does not necessarily tell you anything about which tail has larger values. Other
studies have also found positive skew rather than negative [?]. Some of the literature since Cont [?]
has examined ‘gain/loss asymmetry’ from another direction, looking at the amount of time it takes to
see a gain versus a loss above a certain magnitude. This ‘inverse statistic’ has been used to show that
a stock index will typically achieve a loss more quickly than a gain of the same magnitude [?], but the
same property was not found for individual stocks [?], with correlated downward movements across
stocks proposed as an explanation for why the phenomenon could arise in indices [?].
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2.2 The National Market System 2 BACKGROUND

Figure 1: The U.S. National Market System (NMS) circa 2018. The data collected here was collected from the
SIP feeds by Thesys, the ‘observer’ in Carteret. Image recreated from Van Oort et al. [?]

2.2 The National Market System

Finally, it is possible that some of the stylized facts no longer hold much descriptive power due to
structural changes to modern markets. The U.S. stock market, known as the National Market System
(NMS), has had numerous regulatory and technological changes this century. Trades in the NMS
occur through the matching of buyers and sellers of a stock at a given price point. This can occur
on stock exchanges or off-exchange through brokers, peer-to-peer trading, or at Alternative Trading
Systems (ATSs). As-of 2018, there were 13 stock exchanges split across four geographic locations in
northern New Jersey, and three more exchanges have been added by the time of this writing. Roughly
30% of trades in our data occurred at locations other than stock exchanges, such as through broker
internalization or on Alternative Trading Systems (ATSs). Messages and trades from this array of
venues are consolidated by the three Security Information Processor (SIP) ‘tapes’. Exchanges and
off-exchange venues must report trades to the SIP tape corresponding to the traded security based on
its listing exchange. This is diagrammed at a high level in Fig. ??. Tivnan et al. [?] give a detailed
summary of the market’s infrastructure circa 2016, with evidence of impact from its fragmentation on
the prices acted on by traders.

Each type of trading venue has its own rules and data-reporting requirements, and each venue
reports trades with some (small but nonnegligible) allowed latency2. Systems executing automated
orders are required to sync their clocks to within 50ms of the time maintained by the National Institute
of Standards and Technology (NIST) in the US [?]. This may seem a short amount of time, except
the NMS is increasingly operating at speeds approaching the speed of light [?]. Driven by algorithmic
trading, a stock price can have an extreme rise or drop and rebound back to nearly its original level in
less than a blink of the eye [?]. Andersen et al. [?] noted for their TAQ data on 30 DJIA stocks over
the time-span of 1993-1998 a median inter-trade duration of 23.1 seconds on average for the stocks
in their sample. For contrast, in our sample, the median inter-trade duration for MSFT was 22µs, a
reduction of more than 103 in magnitude. Given these modern developments, it is vital to understand
whether the high-level qualitative behavior of the market Cont and others observed circa 2001 still
holds in the market we have today.

2Bartlett and McCrary [?] found trades of DOW30 stocks to be processed by the SIPs 24ms on average after they
were recorded by exchange matching-engines over the period of 6 Aug. 2015 – 30 Jun. 2016. Off-exchange trades,
meanwhile, are allowed up to 10 seconds to be reported to Trade Reporting Facilities (TRFs) which then report the
trades to the SIPs [?].

©2023 The MITRE Corporation. ALL RIGHTS RESERVED.
Approved for Public Release. Distribution unlimited, Case 23-2969.

5



4 RESULTS

3 Methodology

We test each of Cont’s 11 stylized facts on U.S. stock data for the date range 18 Oct. 2018 – 19 Mar.
2019 (103 trading days). We specifically have looked at ten stocks in our current analysis: AAPL,
AMZN, BRK.B, JNJ, JPM, MSFT, NVDA, TSLA, V, XOM. This list is somewhat arbitrary but
consists of highly traded stocks, providing us with an immense amount of data and detail of how the
market behaved over the time period examined. Five of these stocks are listed at Nasdaq, five are
listed at NYSE. Our data contains all trades in the NMS reported over this time period. The data was
provided by Thesys Group Inc., which acted as a tape consolidator in the NMS and was the sole data
provider for the SEC’s MIDAS in this time period [?]. The Thesys data was collected in the Nasdaq
data center in Carteret, NJ (Fig. ??). Due to the latency and limitations on clock synchronization
mentioned in Section ??, the exact order of trades in the data is not definitive, but our time series
provides the perspective of an observer located in Carteret, NJ, viewing the events of the market as
reported by the SIPs.

We consider two different views of time when constructing our return time series: clock-time based
on timestamp and event time, with trades as the event. In either view, in order to aggregate to any
level that is more granular than a single trade per unit of time, we take the price of the last trade to
occur in that time period. Let X(t,∆t) = logP (t,∆t), the log-price. The log-return at time t and
timescale ∆t is defined as r(t,∆t) = X(t,∆t)−X(t− 1,∆t). Any reference to returns going forward
should be interpreted as meaning log-returns. Absolute returns refers to the absolute value of r(t,∆t).
In clock-time, time points with no trades will be assumed to have the same price as the previous time
point that had at least one trade, as no new price information has been received since then. Note that
the return at that time point will therefore be 0.

We limit our time series to the trading day (9:30am - 4:00pm ET), filtering out ’after-hours’ trading
activity. We also filter out the batch auctions that start and end each day. In our price time series
then, the last price before the close from one trading day will be followed immediately by the first
price after the open of the next trading day. Due to this construction, an overnight return between
t1 = 16:00 on a given day and t2 = 9:30 the following day is characteristically different from a return
between two sequential prices within the same trading day. Therefore, we only consider returns r(t,∆t)
such that t and t−∆t are within the range 9:30 – 16:00 of the same trading day. If the last period of
any day is incomplete (e.g. ∆t = 50Min would result in a 40-minute period at the end of the day),
we remove that return from our series. It is worth noting that the number of data points in a day will
vary inversely with the timescale. Most stocks will have tens if not hundreds of thousands of trades
per day, whereas there are 390 minutes in a 6.5-hour trading day.

Consistent with much of the results and references given by Cont [?], the main tools used in our
analysis are correlation, the calculation of moments, and describing the distributions of events. We
utilize Pearson sample correlation, denoted as corr(x, y) going forward, to calculate the correlation
values. In order to judge what is a consistent, nontrivial feature of the returns in our sample, we look
at the extent a result shows a consistent signal across symbols, with that signal differing from what is
observed for randomly generated ‘white noise’ returns. To generate an instance of white noise returns,
we create 103 days of prices whose trade-level returns are iid, normally distributed (N(0, 0.000696)),
with 250,000 trades randomly (uniformly) distributed throughout each day. By generating 100 of these
103-day price series and calculating results for each, we get a threshold of what type of behavior arises
from random white noise.

4 Results

Before getting into the specific results for each fact, Table ?? gives a high-level summary of our findings.
We find clear evidence for eight of the 11 and weak evidence for Fact #11. Nuances to these results
are unpacked in detail in the below subsections.

4.1 Linear Autocorrelation of Returns

Stylized Fact #1 expects linear autocorrelation in returns to be “insignificant, except for very small
intraday timescales (≈ 20 minutes) for which microstructure effects come into play.” [?]. The linear
autocorrelation function (ACF) is C(τ,∆t) = corr(r(t,∆t), r(t + τ,∆t)). Shown in Fig. ??, linear

©2023 The MITRE Corporation. ALL RIGHTS RESERVED.
Approved for Public Release. Distribution unlimited, Case 23-2969.

6



4.2 Heavy Tails and Aggregational Gaussianity 4 RESULTS

Fact # Fact Name Clock-time Event-time
1 Lack of linear ACF X X
2 Heavy tails X X
3 Gain/Loss asymmetry
4 Aggregational Gaussianity X X
5 Intermittency X X
6 Volatility Clustering X X
7 Conditional heavy tails X X
8 Slow decay of abs. ACF ∼ X
9 Leverage effect
10 Volume/volatility corr. X
11 Asymmetry in timescales ∼

Table 1: Breakdown of which facts we found evidence for in clock-time and event-time. ‘X’ marks indicate
strong evidence found for a fact, while ‘∼’ indicates that only partial or weak evidence was found.

autocorrelation of the 1-minute returns is found to be rather weak and difficult to differentiate from
white noise past lags of about eight minutes. The first-lag ACF values are negative and outside the
range of the white noise returns. Past the first lag, the sign of the ACF varies by symbol. The
magnitudes of the correlations go to zero, although not all are within the range of white noise until
roughly the ninth lag.

At the trade-level, we see negative ACF values in the first lag, characteristic of the so-called ‘bid-ask
bounce’ [?][?]. Starting between -0.25 and -0.5 at the first lag, the ACF goes to zero within the next
few lags. By lag τ = 4, at least some of the symbols have positive ACF while others are negative. Due
to the large number of observations in this timescale, the white noise levels are very small, and the
observed values fall outside those thresholds. Given this, we rely on the fact that the sign of the ACF
varies by the symbol and is relatively small (below 0.02 for τ > 10) to argue that linear dependence is
unpredictable past the first lag and weak past the first ten lags.

Figure 2: Linear autocorrelation of returns.

4.2 Heavy Tails and Aggregational Gaussianity

Cont’s 2nd fact expects return distributions to exhibit heavy tails. As done by Cont in [?][?][?],
we examine the fourth central moment of returns, kurtosis. The kurtosis provides a measure of the
tailedness of a distribution. We calculate kurtosis as defined below:

K(∆t) =
⟨(r(t,∆t)− ⟨r(t,∆t)⟩)4⟩

σ(∆t)4
− 3,

where σ(∆t)2 is the variance of the returns. Note that this definition of kurtosis subtracts 3 in order
for the normal distribution to have a kurtosis of zero. Positive kurtosis therefore means a distribution
displays a sharper peak and heavier tails than a normal distribution. Similar to Cont et al. [?][?],
we plot the kurtosis as a function of j∆t, with the expectation being for K(j∆t) to be positive but
decreasing as j increases.

We see the expected excess kurtosis in clock-time and event-time, as shown in Fig. ??. For
∆t = 1Min, the kurtosis values range in magnitude from 10 to 103 depending on the symbol, with an
overall negative trend as the timescale increases. The exception to this trend is the symbol JNJ, whose
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4.2 Heavy Tails and Aggregational Gaussianity 4 RESULTS

kurtosis stays higher than the other symbols and is actually higher for ∆t = 60Min than ∆t = 1Min.
All symbols stay above the range of the Gaussian white noise returns, as shown by the red line in the
plots. Both these features are as expected by Fact #4, ‘aggregational Gaussianity’, with past results
finding return kurtosis to decrease with timescale but stay positive for timescales of up to multiple
days [?][?][?].

The event-time returns exhibit heavy tails and aggregational Gaussianity even more clearly than
clock-time. The kurtosis of the trade-level returns ranges from around 102 to more than 106 depending
on the symbol. Through aggregation in event-time, we see kurtosis decrease in a nearly monotonic
fashion, going below K(N) = 1 and nearing the levels of Gaussian white noise for N ≥ 2500. In
clock-time, there are more than 2500 trades in fewer than 30-minutes for even our lowest-traded stock
(BRK.B, Table ??), and ∆t = 15Min returns in clock-time still exhibit heavy tails, as discussed
above. Volume provides a proxy for volatility (as discussed later for Fact #10 in Section ??), and
as such viewing returns in event-time is one method of correcting for volatility in the return series.
Through this method of volatility correction, we see the return distributions converge more quickly to
the normal distribution as a function of timescale.

Symbol Mean Variance Kurtosis
AAPL 648.0557 366851.2571 102.8966
MSFT 603.6731 272404.6042 50.4224
AMZN 391.8838 127703.1647 53.5931
NVDA 369.1206 121236.9095 56.3252
BRK.B 99.8275 6606.7316 57.6024
TSLA 232.9985 67692.2095 56.3723
JNJ 165.3215 30041.2354 79.5447
JPM 281.4159 45062.1602 64.5353
V 192.6486 22253.9337 53.1784
XOM 210.4639 29874.7636 102.1875

Table 2: Stats on the number of trades in a minute.

This latter finding is in keeping with Cont’s 7th stylized fact, Conditional Heavy Tails. We can
further test this property by normalizing the returns by their mean and variance on a daily basis.
More specifically, let T denote the trading day t is in. We then define the normalized returns as:

r̂(t,∆t) =
r(t,∆t)− µ(T,∆t)

σ(T,∆t)
,

where µ(T,∆t) = ⟨r(t ∈ T,∆t)⟩ and σ(T,∆t) = ⟨(r(t ∈ T,∆t) − µ(T,∆t))2⟩. The kurtosis for the
normalized returns as a function of timescale is shown in Fig. ??. We see that daily normalization
does reduce the kurtosis from the unconditional returns while still leaving some excess kurtosis at
small timescales. This is exactly as expected from Cont’s description of conditional heavy tails. As we
increase the timescales, both the calendar- and event-time kurtosis values go to zero and even slightly
negative. The average kurtosis of the normalized returns is within the range of Gaussian white noise
for ∆t ≥ 15Min (for comparison, Andersen found similar at 5-minute timescale in the 1990’s [?]).

Figure 3: Kurtosis as a function of timescale.
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Figure 4: Kurtosis of returns normalized by the daily variance.

4.3 Gain/Loss Asymmetry

Cont details his 3rd stylized fact (Gain/Loss Asymmetry) as prices experiencing larger drawdowns
than upward movements. As mentioned in Section ??, it is not exactly clear what results were being
referenced for this fact. Under some interpretations, returns should be expected to show negative
skews, with skew measured as:

S (∆t) =
⟨(r (t,∆t)− ⟨r (t,∆t)⟩)3⟩

σ (∆t)
3 .

We do not see this property consistently across symbols for 1-minute or trade-level returns, as shown
in Table ??.

We considered a more literal read of Cont’s details for this fact as well, from which we would expect
to see larger losses than we do gains. We measured the percentage of returns that are negative versus
positive for different cutoffs. For a given timescale and quantile q, the cutoff is that quantile of a
symbol’s absolute returns in the timescale. The expectation would be for most of the extreme returns
to be losses and for this to be more true as the quantile-cutoff gets closer to the 100th percentile. We
instead found more than half of the symbols having more extreme gains than losses for most quantiles3.
We therefore do not find evidence of a gain/loss asymmetry effect in clock-time or event-time in our
data.

Symbol 1-minute Skew Trade-level Skew
AAPL 0.32 0.01
MSFT 0.32 0.00
AMZN -0.21 0.63
NVDA 0.21 -0.01
BRK.B -0.13 -0.17
TSLA -0.24 -0.17
JNJ 1.32 0.10
V 0.37 0.12
XOM 0.35 0.18
JPM -0.22 -0.00

Table 3: Skew of 1-minute and trade-level returns.

4.4 Volatility Clustering

Cont’s 6th stylized fact expects volatility to cluster in time. We calculate volatility clustering by
looking at the autocorrelation of absolute returns. Similar to linear ACF, let

C0 (τ) = corr (|r (t,∆t) |, |r (t+ τ,∆t) |) .

The expectation is for C0 (τ,∆t) > |C (τ) | and for C0 (τ) to asymptotically go to zero, with a decay
that looks roughly linear on a log-log plot. This latter property, a power-law decay of autocorrelation,
is claimed in the details of Fact #8. As shown in Fig. ??, absolute ACF of 1-minute returns starts

3Shown in our supplementary material, Fig. ??.
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4.5 Intermittency 4 RESULTS

above the values we saw for linear autocorrelation (Section ??) and remain consistently outside the
range of white noise for all 300 lags tested. In log-log time, the shape of the decay appears to be
sub-linear, although this path is noisier for some symbols than others. A couple symbols have absolute
ACF near the levels of white noise by the last lags.

In trade-time, the absolute ACF is around the same level as the 1-minute returns on average but
with a different shape in the subsequent decays of this effect. The rate of decay appears to slow after
the first few lags, level out for more than 1000 lags before either continuing or hitting an exponential
cutoff. After about 3000 lags, a couple stocks dip below the white-noise line while others stay above
0.01. An exponential cutoff occurs for a few stocks at differing places in the later lags. The overall path
suggests a slower than exponential decay, or ‘long-memory’ of volatility in trade-time. Note, however,
that even though the clock-time results show a sub-linear trend in log-log scale they stay higher on
average than the event-time results for the lags tested4.

Figure 5: Autocorrelation of absolute returns.

4.5 Intermittency

As detailed in Section ??, the property of intermittency follows from and is intimately tied to volatility
clustering and heavy tails in the literature. We attempt one additional measure of intermittency,
however, through examining the distribution of interarrival times of extreme price moves. Specifically,
consider the 99th-percentile biggest absolute returns for a given symbol, which we will denote N0.99,∆t.
We can then count the number of these returns we see in a given period of time, with greater variability
providing a measure of intermittency. We show these extreme returns occur more variably than they
would if arising from a Poisson distribution by measuring their Fano factor. The Fano factor is defined
as

F (∆t) =
σ2
N0.99,∆t

⟨N0.99,∆t⟩
,

the ratio of the variance to the mean for the number of extreme returns in a period. This ratio would
be 1 for a Poisson distribution, but we see this is not the case in Table ??. The Fano factor is greater
than one for extreme trade-level returns in 1-minute periods as well as the extreme 1-minute returns
in 30-minute periods. We furthermore found the distribution of interarrival times between intraday
extreme returns to show excess kurtosis5. From these findings, along with the heavy-tails and volatility
clustering already discussed, we see evidence of intermittency in clock-time and event-time.

4There is also much more than 10,000 trades in 200 minutes on average (Table ??)
5Shown in our supplementary material, Table ??
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Symbol 1-min Returns Trade Returns
AAPL 2.11 311.38
MSFT 2.46 126.51
AMZN 2.99 108.11
NVDA 3.50 102.21
BRK.B 1.98 15.79
TSLA 3.55 67.16
JNJ 3.76 53.90
JPM 2.56 51.75
V 2.55 62.21
XOM 2.12 26.78

Table 4: Fano factor of extreme returns. For returns with magnitudes in the 99th-quantile, we measured the
Fano factor of the number of extreme returns in a coarse period of time. For 1-minute returns, the coarse
period was 30-minutes, for trade-level returns, the coarse period was 1-minute.

4.6 Leverage Effect

Figure 6: Leverage effect, measured as the correlation between r (t,∆t) and r (t+ τ,∆t)2.

Cont’s 9th stylized fact asserts that volatility is negatively correlated with the returns for an asset. We
measure the leverage effect (Fact #9) as Cont laid out in [?], drawing from the results of Bouchaud
et al. [?] and Pagan [?]. This approach looks simply at the correlation between returns and lagged
volatility, with volatility measured as the squared returns:

L (τ,∆t) = corr
(
|r (t+ τ,∆t) |2, r (t,∆(t))

)
.

The expectation is for L (τ) to be negative for τ = 1 and to be larger with positive τ than for the
corresponding −τ .

We find no clear trend to the correlation values across symbols. There are varying strengths and
signs to the correlations at each lag, suggesting they might arise from specific variation in the path of a
given symbol’s price over our observation period. For some symbols, there is an interesting symmetry
where L (−1) ≈ −L (1). This also goes against the descriptions from Cont [?] and Bouchaud et al.
[?], who described the relationship between returns and negatively lagged volatility as being largely
insignificant. Overall, we do not see the expected direction of the leverage effect relationship, nor do
we see any clear trend in this relationship across the symbols.
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4.7 Volume/Volatility Correlation

Figure 7: Share volume versus lagged volatility.

The relationship between volume and volatility is Cont’s 10th stylized fact and asserts a positive
correlation between volume and volatility. We examine this by taking the correlations of the volume of
shares6 in a period with the lagged absolute returns. Indeed, in clock-time we do see a strong, persistent
correlation between shares traded and volatility for each of the symbols. We see the correlation values
stay above the correlation seen for white noise returns for most positive and negative lags tested. In
other words, volume correlates strongly with lagged volatility and vice versa. In event-time, most
symbols show a weak relationship between share volume and volatility, synchronously and at a lag of
τ = 1. At all other lags (including negative lags) the relationship is roughly zero for all symbols. JPM
has a much stronger relationship at both of these lags, but it also has virtually no correlation at any
lag besides τ = 0 or 1. These results give some explanation towards the differences in how trade-level
and clock-time returns behave.

4.8 Asymmetry in Timescales

The final stylized fact examines the asymmetry of the flow of information across timescales. For
our base timescales ∆t of 1-minute, we consider the coarse-grained timescale ∆T = 30Min. In
event-time, we use a base timescale of trade-time and N = 1000 as our coarse timescale ∆T . We

calculate A (τ) = corr
(
|r (t ∈ T,∆T ) |, |r (T + τ,∆T ) |

)
, as done by Müller et al. [?]. We measure

the asymmetry by differencing the correlation at the corresponding positive and negative lags τ . The
expectation is for correlation at the negative lags to be larger than at the corresponding positive lags
for at least a few steps.

We first of all see a strong relationship between coarse-grained volatility and fine-grained volatility,
synchronously and at a lag, for each timescale and perspective (Fig. ??). As in Müller et al. [?], the
relationship is strongest at lag τ = 0. Comparing positive to negative lags gives an indication of a
possible causal relationship, and we do see a slight edge given to the negative lags over the positive
lags in clock-time. The smallest values of A(1,∆t)−A(−1,∆t) are around the range seen from white
noise, however, which must be kept in mind despite the consistent signal seen across symbols. After
the first lag, the effect is approximately zero, with varying asymmetries depending on symbol, lag, and
perspective. The asymmetry effect is not found in event-time, with the difference A(1, N)−A(−1, N)
being positive or negative depending on the symbol. Furthermore, when we tested clock-time results
with 10-minutes as the coarse timescale, we found no consistent asymmetry across symbols7. We
therefore only have a consistent trend for one lag in one timescale (clock-time) for this effect, calling
into question the strength of this effect.

6In clock-time, correlation between the volume of trades and volatility was found to be very similar to that between
shares and volatility.

7Given in our supplementary materials, Fig. ??.
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4.9 Discussion 5 CONCLUSION

(a) 1-minute versus lagged 30-minute volatility. (b) Trade versus lagged 1000-trade volatility.

Figure 8: Average fine-grained volatility versus lagged coarse-grained volatility.

4.9 Discussion

As summarized in Table ??, we have shown evidence for eight of Cont’s 11 stylized facts holding true
in general for each of the 10 stocks tested, with weak evidence in support of one other fact. Some
of these facts are better expressed in clock-time than event-time, however, and vice versa. We show
correlation between volume and volatility (Fact #10) in clock-time, with limited to no support found
in the trade-level returns. Only weak results are found for asymmetry in timescales (Fact #11), with
slight asymmetry only found for one timescale. Trade-level returns show a slower decay of absolute
autocorrelation than 1-minute returns, more in keeping with the power-law decay claimed by Fact
#8. Aggregational Gaussianity (Fact #4) is also more clearly expressed in event-time than clock-time,
although the property is overall expressed in both clocks.

The measures examined for Facts #3 and #9 do not provide evidence of gain/loss asymmetry or
the leverage effect being present in general for individual stocks. In contrast to the claims of these
facts, skew and correlation of returns with volatility were both found to vary in sign and strength
depending on the symbol and timescale. The signs of the largest price moves were also not found to
tend negative in our sample. Past research using measures that look at the motion of multiple stocks
together (such as an index or the average over multiple stocks) have found support for these facts,
however [?][?][?][?]. Future research could look at whether these facts might hold for groups of stocks
(e.g. indices) collectively in modern markets. Nevertheless, our results indicate that an individual
stocks should not be assumed to express these properties in general.

Finally, the analysis here focuses on the SIP feeds inclusive of trades that occurred on stock ex-
changes and in other venues. Off-exchange trades were found to lead to some of the noisy signals in
our results, raising the question of how differently they behave from the trades occurring on exchanges.
Future work could examine the off-exchange trades to test whether they exhibit the same set of stylized
facts on their own

5 Conclusion

Cont’s original set of stylized facts [16] emerged from a synthesis of empirical studies, each study
focused on a market which existed prior to 2001. As demonstrated elsewhere in previous studies, the
technological arms race and resulting market fragmentation in the intervening decades since Cont’s
study fundamentally changed the dynamics of the U.S. stock market [30, 48]. Motivated by these
market changes to revisit Cont’s original study, we find strong evidence for eight of Cont’s original
set of 11 stylized facts. A robust set of stylized facts serves at least two distinct communities. For
the community of financial regulators, the set of stylized facts provides guideposts against which to
assess the impacts of regulatory reform, both the intended and unintended impacts. For the scientific
community, the set of stylized facts provides the guideposts for the design, development, test and
calibration for the next generation of market models.
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A APPENDIX

symbol period coarse period quantile cutoff interarrival kurtosis ext fano factor
AAPL trade 1Min 0.9900 0.0003 85.5590 311.3858
AAPL 1Min 30Min 0.9900 0.0028 7.1737 2.1136
MSFT trade 1Min 0.9900 0.0002 78.0351 126.5139
MSFT 1Min 30Min 0.9900 0.0029 15.4199 2.4645
AMZN trade 1Min 0.9900 0.0007 763.1427 108.1100
AMZN 1Min 30Min 0.9900 0.0039 22.8539 2.9924
NVDA trade 1Min 0.9900 0.0008 177.9685 102.2127
NVDA 1Min 30Min 0.9900 0.0051 11.3512 3.5012
BRK.B trade 1Min 0.9900 0.0005 148.9552 15.7938
BRK.B 1Min 30Min 0.9900 0.0022 10.8631 1.9820
TSLA trade 1Min 0.9900 0.0010 711.5467 67.1603
TSLA 1Min 30Min 0.9900 0.0049 14.0916 3.5519
JNJ trade 1Min 0.9900 0.0004 126.0934 53.8952
JNJ 1Min 30Min 0.9900 0.0026 13.5756 3.7562
JPM trade 1Min 0.9900 0.0002 102.0548 51.7487
JPM 1Min 30Min 0.9900 0.0024 9.9335 2.5580
V trade 1Min 0.9900 0.0004 117.0232 62.2143
V 1Min 30Min 0.9900 0.0027 10.4423 2.5491
XOM trade 1Min 0.9900 0.0003 65.9284 26.7751
XOM 1Min 30Min 0.9900 0.0023 6.2099 2.1227

Table 5: Intermittency of extreme returns. For returns with magnitudes in the 99th-quantile, we measured the
kurtosis of the distribution of interarrival times and the fano factor of the number of extreme returns in the
given coarse-time period.

A Appendix

A.1 Supplementary results

(a) 1-minute returns. (b) Trade-level returns.

Figure 9: Percentage of returns above a quantile-cutoff which were losses versus gains, in direct feeds perspec-
tive.
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A.2 Data Quirks and Limitations A APPENDIX

(a) Direct feeds shares versus volatility.

Figure 10: Volume versus lagged volatility at ∆t = 1Min.

(a) 1-minute versus lagged 10-minute volatility. (b) Trade versus lagged 100-trade volatility.

Figure 11: Asymmetry in timescales.

A.2 Data Quirks and Limitations

The Thesys data feeds have flags that indicate special details on a message. The flag ’X’ indicates
a cross trade (auction), and ’I’ indicates an intraday cross (auction). The NYSE Chicago exchange’s
direct data feed indicates trades from auctions with these fields, but these flags are not in the cor-
responding trades in the SIP feeds. We therefore cannot filter out all auctions from the direct feeds
without introducing discrepancies when comparing results versus the SIP feeds. Market open and close
are indicated by separate flags, and we thus are able to remove these cleanly from our time series.

A.3 Breakdown of trades by exchange (or off-exchange)
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A.3 Breakdown of trades by exchange (or off-exchange) A APPENDIX

symbol exchange trades % trades shares % shares
AAPL AMEX 42921 0.1648 3472790 0.1044
AAPL ARCA 2937597 11.2811 329971571 9.9239
AAPL BATS 2413983 9.2703 223499396 6.7218
AAPL BATSY 664858 2.5532 55788172 1.6778
AAPL BX 831118 3.1917 68347374 2.0556
AAPL CHX 8390 0.0322 64343047 1.9351
AAPL EDGA 424390 1.6298 34534481 1.0386
AAPL EDGX 1790511 6.8760 196395446 5.9066
AAPL IEXDEEP 870547 3.3431 92763380 2.7899
AAPL INET 7337911 28.1794 712298426 21.4224
AAPL NSX 190958 0.7333 16127061 0.4850
AAPL NYSE 648735 2.4913 101007765 3.0378
AAPL PSX 443342 1.7025 36650045 1.1023
AAPL TRF 7434695 28.5511 1389812446 41.7987
AAPL Total 26039956 NaN 3325011400 NaN

Table 6: Trades by venue for AAPL.
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