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Reducing Cascading Failure Risk by 
Increasing Infrastructure Network 
Interdependence
Mert Korkali1, Jason G. Veneman2, Brian F. Tivnan2,3, James P. Bagrow3,4 & Paul D. H. Hines3,5

Increased interconnection between critical infrastructure networks, such as electric power and 
communications systems, has important implications for infrastructure reliability and security. 
Others have shown that increased coupling between networks that are vulnerable to internetwork 
cascading failures can increase vulnerability. However, the mechanisms of cascading in these models 
differ from those in real systems and such models disregard new functions enabled by coupling, such 
as intelligent control during a cascade. This paper compares the robustness of simple topological 
network models to models that more accurately reflect the dynamics of cascading in a particular case 
of coupled infrastructures. First, we compare a topological contagion model to a power grid model. 
Second, we compare a percolation model of internetwork cascading to three models of interdependent 
power-communication systems. In both comparisons, the more detailed models suggest substantially 
different conclusions, relative to the simpler topological models. In all but the most extreme case, our 
model of a “smart” power network coupled to a communication system suggests that increased power-
communication coupling decreases vulnerability, in contrast to the percolation model. Together, these 
results suggest that robustness can be enhanced by interconnecting networks with complementary 
capabilities if modes of internetwork failure propagation are constrained.

Understanding the reliability and security implications of increased coupling between interdependent power, 
water, transportation and communication infrastructure systems is critical, given the vital services that these 
infrastructures provide and continuing threats posed by natural disasters and terrorist attacks1,2. This is particu-
larly true for the coupling between electric power and communications networks, given the essential nature of 
electric power to modern societies, the rapid growth of smart grid technology, and the potential for cascading 
failure to lead to catastrophic blackouts3. Smart grid technology, such as Advanced Metering Infrastructure and 
synchronized phasor measurement systems, leverage communication networks to enable new cyber-physical 
control systems designed to mitigate blackout risk4. But automation can also introduce new failure mechanisms: 
cyber-attacks may reach a larger number of critical components5 and outages may propagate between the coupled 
networks, increasing the risk of systemwide cascading failures.

Because physical experimentation with cascading failures in critical infrastructure systems is impractical, 
quantifying the risks and benefits of network interdependence requires the use of simulation models. A variety of 
models have been suggested for understanding the mechanisms by which failures, ideas, and diseases propagate 
within independent networks6,7. Simple models clearly show that different types of networks can respond very 
differently to random failures and volitional attacks8–10. Subsequently, several have suggested that topological 
models can provide useful insight into power grid vulnerability11–16.

However, power grids differ in important ways from these simple models. In a contagion-style model6,7,17, 
failures propagate locally: when Component i fails, the next component to fail is topologically connected to 
Component i. On the other hand, power grids are engineered networks, in which energy flows from generators to 
loads through power lines (edges), each of which has a limit on the amount of electrical flow it can tolerate. When 
node (substation) or edge (transmission line) outages occur, power reroutes according to Kirchhoff ’s and Ohm’s 
laws. This rerouting increases flows along all parallel paths, which can cause a distant element of the network to 
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become overloaded, thus initiating a chain of outages. As a result of this process, failures propagate nonlocally: 
the next component to fail may be hundreds of miles or tens of edges distant from the previous failure. Many 
temporally adjacent outages in the 1996 blackout in the Western US, for example, were spatially separated by 
hundreds of miles18. Overly simple topological models can thus lead to misleading conclusions19. Substantial 
existing research into the design of physics-based models of cascading failure in power systems20–23 suggests that 
one can draw useful conclusions about blackout risk, which align well with historical data, without resorting to 
simple topological contagion models.

This is not to say that simple models are not useful. Simple models can often suggest new approaches to a 
particular problem, particularly when there is limited existing understanding, as is the case with vulnerabil-
ity in interdependent networks. Motivated, at least in part, by increasing interdependence between power and 
communications networks, a number of recent studies suggest that interdependence can increase vulnerability 
in network structures that were otherwise relatively robust17,24,25. Others have suggested that interdependent net-
works may be more robust to small failures, while being more vulnerable to large ones26. Still, others have found 
nonmonotonic relationships between the level of coupling between interdependent networks and network per-
formance, suggesting that there exists an optimal level of coupling between networks27,28. Similarly, numerical 
experiments with a power grid model showed that there exists an optimal size for power networks29, suggesting 
that network robustness can increase by separating large, interdependent power systems. Others30 show that 
when two homogeneous flow networks are coupled together, the risk of individual network failure decreases, 
whereas the risk of systemwide failures increases. Finally, inspired by interdependent systems that occur in nature, 
researchers found that coupled networks with correlated degrees, in which hub nodes are coupled to other hub 
nodes, are generally robust to random failures31. While these results clearly show that coupling is important to the 
performance of interdependent networks, the “typical” impact of coupling is not clear, particularly for the case of 
heterogeneous networks. More work is needed to understand the conditions under which increased coupling is 
beneficial or harmful.

Again, most of these results come from models that diverge from real infrastructure networks in important 
ways, making it difficult to understand the implications for a particular system of interest. First, the topological 
structures found in infrastructure networks differ notably from standard abstract models32,33, largely due to geo-
graphic and cost constraints34. Second, the physical mechanisms of cascading within networks (see Fig. 1) and 
between interdependent networks35,36 differ from those of percolation17,37 and sandpile27 models. In order to 
understand the extent to which insights from abstracted network models can be useful for particular examples of 
interdependence (such as power and communications networks), comparisons are needed between simple mod-
els and those that capture the topology, physics, and coupling of particular infrastructure systems in more detail.

Therefore, the goal of this paper is to understand the impact of network topology, cascading mechanisms 
(physics), and coupling on infrastructure network vulnerability. We use the case of increased coupling between 
electric power systems and communication networks (a key feature of smart grid systems) as an illustrative test 
case. Two sets of simulation-based experiments combine to address this goal. The first set focuses on the impact 
of topology and physics on network robustness. In this test, we compare the relative vulnerability of different top-
ological structures to random disturbances given two different models of intranetwork cascading: a simple conta-
gion model and a model that more accurately captures the mechanisms of cascading in power grids. The second 
set of numerical experiments compares the impact of increased internetwork interdependence on vulnerability, 
given different models of cascading-failure propagation.

Results
Cascading failure in coupled power and communications networks.  Because unplanned distur-
bances are relatively common in power grids and because large cascading failures come with enormous social 
costs, power systems are designed and operated so that single-element outages are highly unlikely to trigger a 
cascading failure. Because physical experiments are impractical, ensuring that single-element outages (known as 

Figure 1.  Intranetwork cascading mechanisms. Comparative illustration of cascade propagation in  
(a) topological contagion and (b) power grid models. In topological contagion models6,27, cascades propagate 
from an initiating failure ① to neighboring nodes ②​. In a power grid, initiating failures ① cause increased loads 
along parallel paths ③, which may subsequently fail19.
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“contingencies”) do not violate limits in a network requires the use of simulation models. Because of the impor-
tance of this problem, computing the impact of line outages on power flows was among the first applications for 
both analog and digital computers38. As a result, the technology for modeling contingencies in power systems is 
relatively mature.

However, multiple failures do sometimes occur, which can trigger long chains of cascading component out-
ages. The technology for modeling these long sequences that can result when contingency analysis fails is not 
mature39. After several elements are removed from a power network, the nonlinear alternating-current (AC) 
power-flow equations (Supplementary Information), automated feedback control systems, and human operator 
actions interact in complicated ways creating many different mechanisms of cascade propagation that are often 
difficult to simulate. No single model perfectly captures all of these mechanisms. Models do exist that focus on 
particular subsets of these mechanisms such as cascading overloads3,20, hidden failures in protection systems40, 
motor stalling41, transient instability18, voltage collapse42, and insufficient situational awareness by operators43,44.

All cascading failure models neglect some of these details, but most models, including the model used in this 
paper, capture the following mechanisms. When a transmission branch (line or transformer) is removed from 
service, the current, and thus power, flowing through that branch redistributes to parallel transmission paths 
throughout the network according to Kirchhoff ’s and Ohm’s laws (Fig. 1). When this redistribution causes an 
overload, additional elements may fail. Because this redistribution progresses along all parallel paths, cascading 
failures often spread nonlocally. If edge (branch) outages divide the network into nonconnected components, the 
power injected into each connected component by generators and the power withdrawn by loads must rebalance. 
The first line of defense for correcting imbalances is known as the load-frequency control system, which measures 
local frequency and adjusts power generation to restore frequency to nominal. When load-frequency control is 
insufficient to correct an imbalance backup, discontinuous control systems, such as underfrequency load shed-
ding and overfrequency generator tripping, act. Both control systems are largely decentralized, acting with locally 
available frequency measurements and thus do not depend on communication networks.

However, communication networks are increasingly used to enable more advanced control schemes designed 
to mitigate the risk and spread of cascading failures. “Automatic Generation Control” systems have long been used 
to actively correct regional supply and demand imbalances. In some regions, “Special Protection Schemes”45 are 
used to automatically trigger remote stress-mitigating control actions (such as disconnecting noncritical loads) if 
critical contingencies occur. And communication systems increasingly enable human operators to quickly com-
bine real-time measurements and computer models to quickly choose and actuate stress-mitigating systemwide 
control actions.

None of these schemes depends on the public internet. Instead, proprietary SCADA (supervisory control and 
data acquisition) networks connect many, but not all, high-voltage nodes in a power network over custom-built 
communication networks that typically combine fiber-optic, microwave, and telephone communication channels. 
Most nodes in SCADA communication networks use battery-based power supplies, providing some assurance 
that power outages will not also result in communication outages. Because SCADA networks have coevolved 
with the physical infrastructure and are inherently tied to geography, their topological features are often highly 
correlated with those of the physical power infrastructure.

However, public communications systems do have some role in power system operations. For example, com-
munication failures were reported to impede efforts to restore the Italian power system after the cascading failure 
of September 28, 200346, thus increasing the temporal duration of the blackout. But this is different from increas-
ing the geographic scope of the cascade, as implied by simple coupled topological models17,24,47,48.

In order to capture these key characteristics of historical cascading failures, our model (DCSIMSEP/C) has the 
following structure. First, the power flowing along each transmission line is computed using a power-flow model. 
This initial model was designed to ensure that all power flows begin at or below their rated limits. Second, initi-
ating outages are chosen at random (in this paper, we simulate node or bus outages) and applied to the network. 
Third, if outages result in the division of the network into multiple nonconnected components, each component is 
rebalanced using a combination of increasing or decreasing generator output (up to 5% of their rated limits) and, 
if this is insufficient, a combination of load shedding and generator tripping. Fourth, new state variables are com-
puted to satisfy power-flow equations (Supplementary Information). Fifth, measurements are gathered from and 
control actions are applied to the power network (Fig. 2). This step relies critically on the health and connectivity 
of the communication network. Sixth, the most overloaded element is removed from the network, simulating the 
actions of relays and circuit breakers. This process then repeats from step three until power flows are below their 
limits, or the simulation time exceeds some threshold, which, in this case, is 30 minutes of simulated time.

Understanding how interdependence will impact cascading-failure sizes requires an understanding of what 
mechanisms of internetwork cascade propagation exist. The link from power to communications clearly comes 
from the fact that SCADA nodes require energy from the grid to operate. However, SCADA nodes (typically 
known as “Remote Terminal Units”) almost universally use battery backup systems to reduce the likelihood of 
failure propagation from the power grid to the communication network. However, there remains some nonzero 
chance that these backup systems will fail to operate when they are needed. In the other direction, when a com-
munication node fails, power nodes do not immediately fail. Instead SCADA node failures make it impossible 
for human operators and centralized automated control systems to monitor and control a particular power node; 
leaving that particular location to operate based on power grid physics alone. In addition, SCADA node fail-
ures may separate the communications network into nonconnected components, thus preventing operators from 
interacting with particular components of the power network.

Since the precise nature of power grid-communications interdependence depends on many factors that vary 
from one location to another, this paper considers three possibilities for the nature of the power-communications 
coupling. In all three of our models in which the communications network is used (our “Smart Grid” models), 
cascades are allowed to propagate within the power grid as described above, but the communication network now 
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has the ability to collect measurements and issue control commands to the grid with the aim of mitigating cascades. 
Each model begins with two graphs: a power network,  P, and a communication network,  C, and a set of con-
nections between the two. If there is an ↔P C   connection at Node i and a contiguous path from Node i to the 
network’s centrally located control center through  C, then the control system is able to collect measurements 
from Node i, such as flow data from adjacent transmission lines and network topology changes. Similarly, sources 
or sinks at Node i can be remotely controlled only if there is a path from Node i through  C to the control center. 
Without this connection, generators and loads react to imbalances in supply and demand in ways that mimic exist-
ing decentralized control systems. Given a valid connection to the control center, measurements can be collected 
and used to choose optimal control actions (i.e., rapid reductions in nodal supply or demand) that could mitigate 
propagation of the cascade (see Methods). Once chosen, control decisions are distributed through C  to the 
appropriate nodes in P . Choosing optimal control actions in this way mimics the behavior of power system 
operators who are constantly using network models to choose stress-mitigating control actions when unexpected 
stresses arise. In most cases, wide-area emergency controls rely on the actions of human operators, but automated 
approaches to wide-area control are increasingly common in the literature49 and in industry practice50. Thus 
DCSIMSEP/C captures the essence of the ways in which centrally located operators (human or cyber-physical) 
react to unexpected stresses in a power system.

Our first variant on this model (“Vulnerable”) has generators and loads at Node i that fail (trip) immediately 
when the corresponding communication Node i fails and there is an  ↔P C connection at Node i. This is the 
most pessimistic of the three models, and diverges substantially from industry design standards that aim to min-
imize the likelihood of a power failure causing communication failures, and vice versa. Since the possibility exists 
for node failures in C , nodes in P  will lose the ability to be monitored and controlled if there ceases to be a 
functional communication path between the control center and a particular grid node. If communication node/
edge failures cause  C to fracture into multiple connected components, signals can only pass within the compo-
nent where the control center is located (Fig. 2). Figure 3a illustrates this behavior and shows results (detail in 
Fig. 6) suggesting that increased power-communications coupling can make power grids more fragile to random 
disturbances.

The second variant (“Ideal”, Fig. 3b) is the opposite. It assumes that communication nodes continue to operate, 
even if nodes in P  fail. This corresponds to the case where the SCADA network has high-reliability battery 
backup systems that allow it to continue to operate irregardless of failures in the power network. In the Ideal 
model, increased coupling results in monotonically increasing robustness.

The third variant (“Intermediate”, Fig. 3c) models a plausible midpoint between these two extremes. In this 
version, communication nodes fail with a probability that is proportional to the fraction of local load shedding 
that has occurred at that node. For example, if Node i in P  has lost 50% of its local load, Node i in  C will fail 
with probability 0.5, which may cut off communication routes to/from the control center. This reflects the fact 
that transmission substations typically have backup power systems (typically batteries), but most have a limited 
amount of onsite storage. As outages become more severe, backup systems will be increasingly taxed, increasing 
the likelihood that power will be lost at these locations. The Intermediate model reflects this situation by scaling 

Figure 2.  Internetwork cascading mechanisms. Comparative illustration of the (a) “Coupled Topological” 
model17 in which failures propagate immediately from the power network to the communications network 
and the (b) “Intermediate” Smart Grid model where failures can propagate within the power network and have 
a chance of causing communications failures. In the Coupled Topological model, an initiating disturbance ①​ 
causes ②​ edge failures in the power grid as well as ③​ node and edge failures in the communications (comm) 
network. As a result, the size of the giant component is reduced to 0.8N. In our smart grid models, the initiating 
failure ①​ potentially causes overloads ④​, which causes an edge failure and ⑤​ a loss of power at the “sink” node. 
This may (depending on the availability of backup power) cause a communication node failure ⑥​ and thus 
communication link failures ⑦​, which fracture the communication network and prevent messages from being 
passed from and to the control center.
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the probability that power failures reach the communication network with the size of the local power failure. As 
shown in Fig. 3c, this model shows reduced robustness relative to the Ideal model, but robustness still increases 
monotonically with increased coupling.

Networks and metrics.  The remainder of this section presents results from two sets of simulation-based 
experiments aimed to understand how different network topologies respond to random node failures of various 
sizes, under several different models of cascading. Five different topological structures were simulated: a square 
lattice, an Erdős-Rényi random graph, a random regular network, a scale-free network, and a model of the Polish 
power grid51. Each of these initial networks was sized to have N =​ 2,383 nodes and M =​ 2,886 links to correspond 
with the size of the Polish grid model.

In each experiment, we vary the size of the initiating failure, f, which is the ratio of the number of nodes in 
the initial random failure to the total number of nodes in the network, N. The ultimate impact of each initiating 
failure is measured by finding the size of the largest (giant) connected component of the graph after the cascade 
has subsided, N∞, or (for the power grid models) the amount of demand served at the conclusion of the cascade, 
D∞. For each f we report, as our metric of robustness, the probability that more than half of the original N nodes 
remain within the giant component at the conclusion of the cascade: PN/2 =​ Pr(N∞ >​ 0.5 N). For the power net-
work models, we measure the probability that at least half of the original demand is served at the conclusion 
of the cascade, which we denote by PD/2 =​ Pr(D∞ >​ 0.5 D). In this paper, we use the term vulnerability to mean 
the opposite of robustness (e.g., 1 −​ PN/2). In some cases, we compare the vulnerability of network-structure/
cascade-model combinations from the area under the PN/2 vs. f curve (Supplementary Information).

Intranetwork cascading.  Our first set of numerical experiments compares the robustness of five different 
network structures to random node failures using the two different models of cascade propagation illustrated in 
Fig. 1: a simple topological contagion model and a (not-communication-enabled) power grid model.

Figure 4a shows the topological contagion results, using a model proposed by Watts6. In this model, after the 
initial set of fN node failures, Node i fails if the fraction of Node i’s neighbors that are in a failed state exceeds a 
threshold φi, which was randomly drawn for each node i from a uniform distribution over (0, 1). Figure 4b shows 
results from the power grid model. For these simulations, we rewired the transmission lines from the original 
Polish power network according to the appropriate synthetic network type. While real power networks clearly 
deviate from the synthetic topologies, this rewiring allows us to understand the impact of network structure on 
network performance.

Figure 3.  Illustration of the three smart grid models. In the Vulnerable model (a), communication failures 
cause grid failures, and power failures cause communication failures, both with probability one. As the 
connectivity between the power grid and the communication network increases, the robustness of the network 
decreases. In the Ideal model (b), communication failures can degrade the ability to monitor and control 
power nodes, but power failures cannot return to cause additional communication failures. In this case, as 
connectivity increases, robustness increases. In the Intermediate model (c), communication failures degrade 
control performance as before, and power failures trigger communication failures probabilistically. Robustness 
is degraded, but still increases monotonically with connectivity.
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The results from these two models show some notable similarities. From both models of cascading, the power 
grid and lattice structures appear to be most vulnerable and the scale-free topology is the most robust. In fact, the 
relative order of the five networks is nearly identical in Fig. 4a,b.

On the other hand, the Power Grid model accentuates the robustness differences among the different topol-
ogies and changes the nature of the transition in f. In the Power Grid model, we do not observe the rapid, 
second-order phase transition that is apparent in the topological model; transitions as f increases are more grad-
ual. This may result from averaging over many abrupt transitions as the number of initiating failures increases, as 
was previously reported for transitions in vulnerability with increasing load levels23. Whereas the midpoint of the 
transition is similar in the two models (i.e., Power Grid and Topological Contagion) for the scale-free network, 
the Polish power grid and lattice structures appear to be much more vulnerable from the perspective of the Power 
Grid model.

Internetwork cascading.  Our second set of numerical experiments explores the impact of increased cou-
pling between networks on network vulnerability. Specifically, we considered a pair of interdependent networks 
( P and  C), in which a fraction q (degree of coupling) of the N nodes in  P are coupled to corresponding 
nodes in C . As in the first set of simulations, two different types of models are compared: one that is purely 
topological (Fig. 2a) and a second that follows the cascading-failure model introduced previously (Fig. 2b).

The first model is an implementation of the interdependent cascade/percolation model proposed by Buldyrev et 
al.17. In this paper, we start with two coupled networks, P  and C , each of which has sufficient internal connectiv-
ity to form a single connected component. Random initiating failures were applied to nodes on network P , and the 
incident edges on that network immediately fail and are removed. If the removed edges result in a connected com-
ponent in P  (or C ) that includes a different set of nodes from those in the coupled network, then the edges 
linking the components in  C (or P ) fail. This cascading process continues until both C  and  P have the same 
set of connected components. Hereinafter, this model will be referred to as the “Coupled Topological Model”.

Because of the fact that SCADA networks are typically custom-built to monitor and control a particular power 
grid, the topology of a SCADA network is typically strongly geographically correlated with that of the infrastruc-
ture system to which it is coupled. Thus,  P and C  are likely to be somewhat, but not perfectly, correlated. To 
approximate this correlation, C  was initialized to be identical to  P, and then 10% of the edges in  C were 
randomly rewired (see Methods).

Figure 4.  Robustness (PN/2) of several network structures to random node failures. Panel (a) shows results 
from a model of topological contagion and (b) shows results from a model of cascading in power systems.
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After initializing the data and models, the various models were, as before, subjected to random node failures, 
and the performance of the networks was measured. For the Coupled Topological results, we measured network 
performance using the giant component probability, PN/2. For the Smart Grid models, we measured both PN/2 and 
an analogous measure of performance: the probability that the network can serve at least 50% of the load in the 
network, after the cascade has subsided, PD/2 (see Methods).

Figure 5 portrays the initial state of the coupled system (the left panel) with 10% coupling (i.e., q =​ 0.1), 
together with the state of the two networks after the cascade has terminated (the right panel) in the Intermediate 
Smart Grid model, wherein the C -nodes fail with a probability that is proportional to the fraction of load shed-
ding that has occurred at the corresponding P -nodes.

Figure 6 shows the results for fixed failure sizes, f =​ 0.05, and varying levels of coupling, q. For q =​ 0 (i.e., 
uncoupled networks), the smart grid models produce results that are identical to the uncontrolled power grid, 
since cascading occurs only within the power grid; the communication network neither benefits nor detriments 
the system. As q increases, the robustness of the Ideal and Intermediate models increases monotonically. For 
the Vulnerable Smart Grid model, robustness decreases monotonically with q. In contrast, for the Coupled 
Topological model, robustness decreases monotonically with q; the “optimal” level of coupling is q =​ 0 for all ini-
tiating failure sizes, f. It is interesting to note that the results from both types of model contrast with prior results27 
that suggest that there exists an optimal level of coupling between q =​ 0 and q =​ 1. In all of these cases, optimal 
performance results are obtained at either q =​ 0 or q =​ 1.

In order to compare the Intermediate model to the Coupled Topological model in more detail for differ-
ent types of topological structures, we took the four additional network topologies from Fig. 4, and connected 
them to correlated communication networks, using the same method used with the Polish power network. Both 
models, with full coupling, q =​ 1, were subsequently subjected to random node failures as before, measuring the 
robustness of the networks to different disturbance sizes (varying f).

Figure 7 shows the results. Comparing these results to the single-network contagion results in Fig. 4 suggests 
that coupling networks together always increases vulnerability, regardless of topology. However, for the power 
grid model, a similar comparison of the Intermediate Smart Grid model to the baseline Power Grid model (Fig. 4) 
suggests that increased interdependence always increases robustness, regardless of topology.

Discussion
Together, these results have important implications both for the emerging science of interdependent networks 
and for the design of intelligent, cyber-physical infrastructure systems.

Firstly, the power grid and topological models show several important qualitative similarities. The relative 
vulnerability of the different network structures to random failures is similar across the various models studied in 
this paper. Lattices are consistently the most vulnerable and scale-free networks are consistently the most robust; 
power grids perform only slightly better than lattice topologies. This indicates that topological structure does have 
an important impact on the vulnerability of power networks, and that some aspects of this impact are captured in 
simple topological models of cascading.

However, this is where the similarities end. When we measured the effect of network coupling on perfor-
mance, increased coupling consistently increased network robustness in all but the most extreme (and unrealis-
tic) Smart grid model. For the Ideal and Intermediate models, the most robust configuration was the fully coupled 
case, q =​ 1. In the Coupled Topological model, q =​ 0 was the optimal level of coupling28, and robustness monoton-
ically decreased with increased coupling. For every attack size and every topological structure, increased coupling 

Figure 5.  The coupled power-communications model, applied to the Polish power system test case. The 
left panel shows the topology of the power and communications networks, along with the initiating node 
(bus) outages and the internetwork links. The right panel shows the locations of line outages that subsequently 
occurred in the “Intermediate” Smart Grid model. Colors in the power network on the right show the 
separation of the grid into nonconnected components as a result of cascading.
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increased vulnerability in the Coupled Topological model and decreased vulnerability in the more realistic smart 
grid models. The reason that vulnerability decreased in the smart grid models is that interconnections between 
the two networks performed valuable functions in arresting the spread of cascades. When components were 
overloaded, and thus at risk of cascading, the communication network facilitated valuable systemwide control 
functions. Since the communication network’s beneficial functions are not modeled in the Coupled Topological 
model, increased coupling decreases robustness. However, in real infrastructure systems, as in biological sys-
tems31, networks are typically coupled together because coupling enables some synergistic function. These dif-
ferences indicate that models of network interdependence can lead to misleading conclusions if those models do 
not adequately capture the beneficial functions of coupling in addition to describing the various mechanisms by 
which cascades can increase propagation between coupled systems.

Clearly, these results come from numerical simulations that include important assumptions about how power 
systems react to stress and how cascades propagate within and between coupled networks. Understanding exactly 
what mechanisms of cascading in power systems need to be modeled in order to obtain statistically accurate 
results is an ongoing challenge39. The actual behavior of a particular power system coupled to a particular com-
munication network will certainly differ from the simulations in this paper. However, these results clearly show 
that conditions exist under which the coupling of one network to another can improve the performance of the 
coupled systems. Similarly, these results show that when evaluating the performance of coupled systems, one 
needs to understand not only the detrimental impacts of coupling, but also the beneficial functions that can come 
from increased interconnectivity. Understanding both the benefits and risks of interconnections is key to the 
design of robust, resilient systems in a world in which infrastructure networks are inextricably interdependent.

These results suggest several practical design practices for interdependent infrastructure systems. In the case 
of the Ideal and Intermediate Grid models, increased coupling was more beneficial than detrimental because of 
the limited ways in which cascades could propagate between the two networks. In practice, limits on internet-
work cascades can be implemented by sound engineering practices that reduce the chance of failures propagating 
between networks. For example, adding reliable, well-maintained backup power systems to critical components is 

Figure 6.  Robustness of the Polish network to random failures, with varying levels of coupling, q. Panel 
(a) shows results from four different models of cascading in power grids, three of which are coupled to 
communications systems, after 5% of nodes initially failed (f =​ 0.05). In this case, we measured robustness 
with the probability that at least half of the original demand is served at the conclusion of the cascade. Panel 
(b) reports analogous results from the Coupled Topological model, for several different failure sizes, with 
robustness measured as in Fig. 4.
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an effective strategy for reducing harmful interdependence. In some cases, such as the use of backup battery sys-
tems for SCADA communications, this strategy has already been implemented with substantial success. However, 
other harmful infrastructure interdependencies for which there are low-cost solutions persist. For example, add-
ing battery backup systems to traffic signals along critical transportation corridors is a relatively low-cost way to 
reduce coupling between power and transportation networks52.

Methods
Network topological data.  In this study, five different topological structures were studied. Power network 
data came from a model of the Polish power grid that is publicly available with MATPOWER51. This model has 
N =​ 2,383 nodes (buses) and M =​ 2,886 edges (transmission lines or transformers), after removing parallel edges. 
For comparison, four synthetic networks were generated according to the standard Erdős-Rényi (ER)53, ran-
dom regular (RR)54, preferential attachment (scale-free, SF)55, and square-lattice attachment kernels56. In order to 
ensure that the synthetic graphs had the same size as the power network, we randomly removed edges from the 
initial topological configurations as needed to produce graphs with the correct size. Edge removals that would 
result in the graph separating into nonconnected subgraphs were avoided in order to ensure that the predis-
turbance graphs were fully connected. Similarly, duplicate edges and self-loops were removed for consistency 
between the synthetic graphs and the power grid data.

Generating synthetic power grid data.  After building graphs that were identical in size to the 
2,383-node Polish power grid, we generated synthetic power grid data for each of the synthetic graphs. In order 
to locate sources and sinks within the synthetic networks, each of the generators and loads in the Polish network 
was randomly assigned to one node in each network. In addition, each Edge (transmission line) i ↔​ j was given a 
normalized impedance of 1, such that the normalized power flowing from Node i to Node j, after the linearized 
direct-current (DC) power-flow assumptions (Supplementary Note), was Fij =​ θi −​ θj, where θx is the phase angle 
of the sinusoidal voltage at Node x. Flow limits on each transmission line were determined by taking the flow 
limits from the original Polish network data and randomly assigning each limit to one of the links in the synthetic 
network. After this was done, the line limits were increased as needed to ensure that no single-line outage would 
result in a cascading failure, as is common practice in power systems.

Figure 7.  Robustness of fully coupled networks, q = 1, to random failures. In the (a) Coupled Topological 
cascading model and in the (b) “Intermediate” Smart Grid model. The shadowed data are duplicated from 
Fig. 4a,b in order to compare the coupled and single-network models.
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Generating communications network topologies.  Geographically correlated communication net-
work,  C, data were generated as follows. First, we made a copy of the corresponding power network such that 
=C P  . Then, we randomly rewired 10% of the edges in  C, excluding rewirings that would result in 

self-loops or duplicate edges. Then, nodes in the two parallel networks were interconnected. Specifically, Node i 
in P  was connected to Node i in  C with probability q ∈​ [0, 1]. The resulting interlinks produce a correlated 
pair of graphs (as illustrated in Fig. 2), which are at least somewhat similar to the correlated topologies found in 
real power and communication networks. Once each  C was formed, we located a “control center” at the node in 
 C with the highest betweenness centrality.

Modeling cascading failures in power grids.  Our model of cascading failure in power systems 
(DCSIMSEP/C) extends prior work on cascade modeling by the authors57 and others3,58,59, which are closely 
related to random fuse networks60. In this model, power flows are computed using the DC power-flow equations 
(Supplementary Information). The DC model can be summarized as follows:

θ− =G D B (1)

θ θ= −F
x
1 ( )

(2)
ij

ij
i j

where G and D are vectors of power generation and load; B is a weighted Laplacian matrix that encodes the 
network’s topology; θ is a vector of voltage phase angles; Fij is the power flow from Node i to Node j; and xij is the 
(normalized) inductance of the transmission line. When a component fails, flows are recomputed according to 
equations (1) and (2). If the revised power flows exceed the flow capacity, this line will open (disconnect) in an 
amount of time that is proportional to the overload. This changes the configuration of the network (changing B), 
causing the flows to be recomputed. If the network separates into islands, there may not exist a feasible solution 
to equation (1) due to an imbalance between supply and demand. To correct this imbalance, a combination of 
generator adjustments and load reductions are used to arrive at a new, feasible solution of equation (1).

Smart grid models.  The three smart grid models each depend on an optimization problem that identifies 
control actions (load shedding and generator reductions) in order to mitigate overloads on transmission lines. 
This problem seeks to minimize the amount of load shedding and power generation reductions necessary to 
arrive at a feasible solution to equations (1) and (2), with the added (soft) constraint that each flow Fij should be 
within the flow capacity limits for this link. The optimization proceeds as follows. After each 1 minute of simula-
tion time, the centrally located control center collects measurement data (power flows, line status (open/closed), 
generator states and load states) from all of the nodes for which there exists a connected path between the control 
center and that node. Let M N⊆ P represent this set of measurable nodes and edges,  represent the unmeas-
urable nodes, F represent the vector of measured power flows, G  represent the vector of measured generator 
states, and D represent the vector of measured load states. For the Ideal Smart Grid model, F , G, and D  
are always full vectors of all measurements from nodes that have communication network connectivity (given q). 
Depending on the level of coupling, q, and the state of the communication network,  C, these may be subvectors 
of all possible measurements. After the control center gathers measurements F through the communication 
system, it solves the following optimization problem:

λ− ∆ +
∆ ∆

Τ Τ1 D Fminimize (3)D G,
over

θ∆ − ∆ = ∆G D Bsubject to (4)

θ∆ = ∀ ∈ Ωi0, (5)i ref

θ θ∆ = ∆ − ∆ ∀ ∈F
x

i j1 ( ), ,
(6)

ij
ij

i j

 + ∆ ≤ +F F F F (7)max over

≥F 0 (8)over

 − ≤ ∆ ≤G G 0 (9)

− ≤ ∆ ≤D D 0 (10) 

∆ = ∆ =G 0 D 0, (11) 

The objective for this problem (3) is to minimize the total amount of load shedding (−​1TΔD) plus the 
weighted sum of all overloads that cannot be eliminated through changes to generators and loads (λTFover). For 
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this work, we set λ to be uniform weight vector such that each λ​i =​ 100 (in normalized units); however, we found 
that the results are largely insensitive to this parameter (see Supplementary Fig. S6).

Constraint (4) enforces that the net changes to nodal power injections (ΔG −​ ΔD) must be equal to the 
changes in power flowing out through transmission lines (BΔθ). Constraint (5) fixes one voltage phase angle, θ, 
in each connected component of the network as a reference; Ωref represents this set of reference nodes. Constraint 
(6) computes the changes in flow on each of the measured transmission lines. Equation (7) attempts to limit the 
post-optimization power flows ( + ∆F F ) to be below the flow limits, Fmax. The vector Fover in (3) and (7) turns 
the flow constraint into a soft constraint, which alleviates the problem of occasionally infeasible cases, particularly 
when the system is very heavily stressed. Fover is constrained to be nonnegative in inequality (8). Constraints (9) 
and (10) ensure that the system exclusively reduces load and generation at measured nodes () in its attempt to 
eliminate overloads on transmission lines. Finally, equation (11) forces the system to not change load or generator 
at nodes that are not accessible from the control center (). These assumptions are similar to prior work by 
Parandehgheibi et al.36.

Each of the three smart grid models makes use of this optimization problem in a slightly different way. The 
Ideal Smart Grid model uses perfect information about all communication-connected nodes to solve this prob-
lem, optimally choosing adjustments to the available generators and loads, independent of where they are in the 
network. If there is no communication link to a particular node, the Ideal Smart Grid model does not gather data 
about flows from this location, and assumes that it has no ability to control generators or loads at this node. Thus, 
the topology of C  does not impact the Ideal model.

The Intermediate model, however, does rely on the state of the communication network. The optimizer can 
only control and monitor nodes when there is an C -path between a particular grid node and the control center 
node. When the path to Node i is broken, the optimization formulation is adapted to exclude generation and load 
at Node i from the set of control variables, and it ignores the flow constraints adjacent to Node i (e.g., the flow 
constraint on Edge i →​ j), unless an adjacent node (e.g., j) is connected to the control center. In addition, the 
Intermediate model assumes that if there is load shedding at grid Node i, the adjacent communication node will 
fail with probability that is equal to the fraction of load shedding.

The Vulnerable Smart Grid Model adds to this the rather extreme assumption that if a communication node 
fails, the generation and load at that node will also fail.

Measuring the initiating failure size.  Note that our measure of attack size, f, as shown in Figs 4, 6 and 7, 
is the complement of the notation used by Buldyrev et al.17. In our notation, f represents the size of the initiating 
attack (or random failure). In Buldyrev et al.17, p =​ 1 −​ f represents the fraction of the N nodes in each network 
that remain in service immediately after an initial, random set of f =​ ∼​(1 −​ p)N node failures. f was used, rather 
than p, for clarity of presentation, particularly for readers who are less familiar with the percolation literature.

Measuring robustness, vulnerability, and sample size.  Our measure of robustness, PGC =​ PN/2, differs 
slightly from the traditional P∞-measure, which is commonly used in the percolation literature and which aver-
ages GC sizes across a set of samples. Since power networks are small, relative to (for example) thermodynamic 
systems, the underlying rationale for P∞ is less robust. In our judgement, the PGC-measure more clearly presented 
the results. However, we computed results using both metrics and found that the P∞-measure led one to the same 
conclusions as reported in this paper. See Supplementary Information for a comparison of the results with PGC 
and P∞.

In this paper, each estimate of PGC comes from the simulation of 1,000 random initiating disturbances of size 
f and counting the number of cases that result in a cascade with the end-state largest connected component con-
taining at least 0.5 N nodes. This sample size (1,000) was found to provide a reasonable balance between variance 
in PGC and computational requirements, which were substantial given the more detailed nature of our models. To 
compute the variance, we used standard bootstrapping methods and found the standard deviation of PGC to be 
almost universally less than 0.01.

In discussing the vulnerability of the various models we frequently suggest, based on the sigmoidal f-PGC 
curves, that one network/model combination is more or less vulnerable than another. Many different measures, 
such as stochastic dominance or the point at which PGC drops below 0.5, could be used to reach nearly identical 
qualitative comparisons; however, our primary metric for comparison is the area under the f-PGC curve, which is 
larger for networks that are more robust to random failures. The inverse of this is thus a measure of vulnerability 
(Supplementary Information).

Data and materials availability.  Computer code for the models and analysis methods described in this 
paper, and other information can be found online at https://github.com/mitre-rise/coupled-networks.
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