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Supplementary Material

S1 Pseudocode Example of Cumulative

Disruption Algorithm

For readers seeking a succinct code-like description of
our cumulative disruption curve algorithm, we have in-
cluded listing S1.

1 disruption = []

2 for c in communities:

3 remaining = 0

4 original = 0

5 removeCommunity(c)

6 for user in users:

7 if degree(user) > 0:

8 remaining += degree(user)

9 original += originalDegree(user)

10 disruption += [1 - (remaining / original)]

Listing S1: Pseudocode for disruption algorithm

Note that when calculating disruption on large net-
works, it is much more efficient to cache the size of the
smallest community that each user participates in. We
can then sort all users by the order in which they will
be removed, and avoid computationally expensive refer-
ences to a graph or adjacency matrix for each removal-
step in the algorithm.

S2 Applications to Unipartite Networks

Our influence metric is intended for settings with clearly
defined communities. For example, participation in sub-
reddits, membership on a Mastodon server, or commit-
ting to a software code repository, all discretely identify
users as members of those explicitly-bounded groups.
However, network data is often presented in a unipar-
tite configuration such as users following other users. If
it is still desirable to delineate communities and measure
their influence in these settings, then they can be con-
verted into compatible bipartite networks using the fol-
lowing procedure:

1. Apply a context-appropriate community detection
algorithm to label each user as belonging to one
community

2. Create a vertex for each community

3. Replace all user-user edges with user-to-community
edges, where the edge weight is equal to the number
of unipartite edges each user had to other nodes in
that community

4. Apply our influence metric to the resulting bipartite
graph

An example of this procedure is illustrated in Fig. S1,
using a unipartite Watts-Strogatz small-world network
(100 nodes, 5 neighbors, rewiring probability of 5%),
and label-propagation for community detection. The uni-
partite graph is shown in the top-left with community la-
bels visualized with color. It is converted to a bipartite
representation shown in the upper-right, and the effect
of removing each community is illustrated in the bottom
frame.
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Figure S1: Example of applying our disruption metric
to unipartite graphs by detecting communities on a uni-
partite small-world network (top-left), converting labeled
communities into a bipartite representation (top-right),
and running our influence metric on the bipartite graph
(bottom)

S3 Calculating the Area Under the Disrup-

tion Curve

For Figs. 2b, 3b, and 5 we use the area under the dis-
ruption curve as a single-variable summary of how cen-
tralized a network is around its largest communities. To
calculate the AUC, we use a trapezoidal approximation
in logarithmic space.

We chose a trapezoidal approximation to calculate the
area even with limited sample points from real-world net-
works. Integration is possible for purely analytic dis-
ruption curve simulations as in Sec. S5, but this is not
feasible for our non-Erdős-Rényi networks, so we use a
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trapezoidal approximation for all synthetic networks for
consistency.

We measure the AUC in logarithmic space, because
measuring in linear space would heavily weight the influ-
ence of the smallest communities that are removed last,
and our primary interest is in examining the influence of
the largest communities on the broader population.

S4 Synthetic Network Topology Details

We measure centralization on a variety of synthetic net-
works introduced in Sec. 3.3. In this section, we include
further description and visualization of the synthetic net-
works used.

Bipartite Near-Star networks are analogous to a uni-
partite star network with duplicate edges, but in a bipar-
tite setting. Starting with a unipartite star, replace each
edge from the hub to a leaf with a two-path from the hub
community to a new “user” vertex, to the leaf commu-
nity. Duplicate edges from the unipartite hub to leaves
are converted into multiple users that share a commu-
nity, and serve to break ties when pruning communities
for disruption curves. This is illustrated in Fig. S2.

Figure S2: Example Bipartite Near-Star. Circles are
communities, squares are users. All users are connected
to two communities, and a primary hub is connected to
all users.

For our “Powerlaw” networks we follow a bipartite
configuration model. We first create vertices represent-
ing the desired number of communities and users. We
then draw from a powerlaw distribution with an assigned
g exponent, and assign the drawn degree to each com-
munity. Then, we create a corresponding number of
edges, wiring each community to users drawn uniformly
at random without replacement. This yields networks
where communities follow a powerlaw degree distribu-
tion, while users follow a normal degree distribution.

Bipartite community-user networks can be visualized
in a flat plane, as in Fig. 1a, or as a multi-layer graph, as
in Fig. S3. A multi-layer representation may be benefi-
cial for representing inter-community relationships that

are not explained by shared users, such as Mastodon
federation agreements, or shared moderator staff in two
subverses. However, these multiplex relationships were
deemed out-of-scope for our current work.

Communities

Users

Figure S3: An example bipartite powerlaw network, vi-
sualized using a “community” and “user” layer

S5 Mathematical Analysis of Disruption in

Random Networks

We here calculate the disruption curves for random bi-
partite networks parameterized by their joint-degree dis-
tribution. This approach therefore fixes the distribution
{gm} of communities m per user, the distribution {pn} of
community size n, and the joint-distribution Pn,m for the
degree of the node and community involved in a random
bipartite link. Beyond these constraints, the networks are
fully random but allow us to explore the role of hetero-
geneous connectivity at the user and community level as
well as the impact of correlations between both levels.

We wish to calculate the disruption D(n) involved
when removing communities of size n0 < n in these ran-
dom networks. By definition of the bipartite network, we
know that npn edges are removed when removing com-
munities of size n. Once again, we define disruption as
the fraction of remaining edges disrupted by communi-
ties of size n during the pruning process. It is thus given
by the number of edges that belong to communities of
size n minus the fraction un of those that are the sole
edge of the corresponding users (since these users are re-
moved in the pruning) divided by the number of edges
belonging to communities of size equal or smaller than n
minus the unnpn users removed. We write:

D(n) =
npn � unnpn

Ân0n n0pn0 � unnpn
. (1)

Edges to comms. of size n Edges to removed users

Edges to comms. n or smaller

The quantity un can also be defined as the probability
that a random user of a community of size n has no com-
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munity smaller than n. It can therefore be calculated like
so:

un =Â
m

Pn,m

Âm0 Pn,m0

 
Ân0�n Pn0,m

Ân0 Pn0,m

!m�1

. (2)

Fraction of users in comm.
size n that have m edges

Fraction of users with m edges
in comms. larger than size n

In the previous equation, we sum over every possible
type of node in a community of size n, which will have a
number of other communities m�1 proportional to Pn,m,
and ask for all of these communities to be larger or equal
to n, which will be proportional to the sum of Pn0,m over
all n0 larger or equal to n. Normalizing the probabilities
appropriately yields Eq. (2) as written.

Note that these equations assume that edges are un-
weighted, and that there are no duplicate edges, which is
what we expect from an infinite random simple graph.
In our real-world data sets there are often duplicate
edges (for example, one user following several different
users on a Mastodon instance), which we compress to
weighted edges for convenience.

Despite this difference between the analytical expres-
sion and real socio-technical networks, the analysis of
random infinite graphs can be useful to test how disrup-
tion is impacted by simple network statistics such as de-
gree distributions or correlations in the joint community-
user degree matrix Pn,m.

In a simple experiment, we create a random Erdős-
Rényi-like bipartite network and correlated equivalent
networks with the same degree distributions and variable
community-user degree matrices Pn,m. The random net-
work has a simple Prand

n,m µ npnmgm (normalized) which
we can modify manually. To do so, we calculate the max-
imally correlated Pmax

n,m by assigning users with highest
degrees mmax to the largest communities available be-
fore doing the same to users with the next higher de-
gree and so on all the way down. We can do the same
to calculate Pmin

n,m by assigning users with the lowest de-
gree to the largest communities and working our way
up in the user degree distribution. We can then create
arbitrary community-user degree matrix Pn,m by inter-
polating between linearly with (1� r)Prand

n,m + rPmax
n,m or

(1�r)Prand
n,m +rPmin

n,m .
Our results are shown in Fig. S4. We find that positive

user-community degree correlations increase disruption
and therefore centralizes the resulting socio-technical
network. Conversely, negative correlations decreases
correlations and decentralizes the network. That being
said, the relative effect of correlations is relatively small
as the networks are still otherwise completely random.

Figure S4: Random bipartite networks with varying user-
community degree correlations. We start with a random
bipartite network where the ratio of users to communi-
ties is 30 and a binomial distribution of communities per
user with average 1.2. We create two counterfactuals
where degree correlations are at 30% of the maximally
assortative network and of the maximally disassortative
network. We show the relative difference in disruption
caused by correlations (disruption of correlated network
divided by disruption of random network minus 1).

S6 Further Analysis of Assortativity

There are multiple interpretations of degree assortativity
in a bipartite setting. The linear correlation between user
degrees and community degrees measures whether high-
degree users are likely to be connected to high-degree
communities. In our network definitions edges repre-
sent activity, like follow relationships or participation in
conversations, so this measures whether active users are
likely to be connected to communities with lots of activ-
ity. However, a second metric of interest is whether large
communities are likely to be connected to other large
communities, or in other words, the assortativity of a
unipartite-projected community-community graph. This
can also be broken into two sub-cases: assortativity of
community size (do communities with many users share
users with other high-population communities), and as-
sortativity of degree (do communities with lots of activity
share users with other high-activity communities).

These three notions of assortativity are not indepen-
dent; we might expect that users with lots of activity are
active in communities with high populations, and may
act as bridges between multiple communities with high
activity and high population. However, the three metrics
are not guaranteed to correlate and should be measured
separately.

While rewiring to promote user-community degree as-
sortativity, we also plotted the changes in community-
community degree assortativity, shown in Fig. S5. Strik-
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ingly, the community assortativity decreases as we
rewire to promote user assortativity. This is because as
we rewire edges to focus user connections on the largest
communities we implicitly decrease the number of edges
between communities. This also matches the changes in
disruption in Fig. 5: increasing assortativity may recon-
nect large and insular communities with the rest of the
network, briefly increasing their influence, but continued
assortativity rewiring also cuts bridges to and between
smaller communities, yielding a sparse network that is
far less centralized.

Figure S5: Rewiring to increase user-community
degree assortativity (top) decreases the projected
community-community degree assortativity (middle)
and community-community population assortativity
(bottom).

To further explore the relationship between these types
of assortativity, we also rewired networks in the re-
verse direction: for randomly selected pairs of edges,
we rewired those edges to decrease user to community
activity assortativity. We have plotted the change in dis-
ruption curves (Fig. S6) and correlation between assorta-
tivity metrics (Fig. S7). In most networks, decreasing ac-
tivity assortativity lowers centralization, although the ef-

fect diminishes as the network topology more closely ap-
proximates a random network. The one exception is the
Penumbra; this network has such sparse inter-community
connections that any perturbation of edges increases the
cross-community links and therefore increases central-
ization.

Figure S6: Rewiring networks to decrease user-
community degree assortativity also typically decreases
disruption when large communities are removed. How-
ever, for very sparse networks like the Penumbra, and
perturbation, including rewiring to decrease assortativity,
increases community inter-connection and so increases
the influence of large communities.

S7 Cumulative Impact on Giant Compo-

nent Size

Some readers may be interested in how removing large
communities influences the giant component size on
each network. This is closely related to the cumulative
population size in the top sub-plots of Fig. 2a and Fig. 3a.
Intuition suggests that the size of the giant component
will be inversely proportional to the number of cumula-
tive communities removed; as more large communities
are pruned, the giant component should shrink. This re-
lationship holds so long as the remaining communities
are interlinked, but falters once a “bridge” community is
removed and the giant component splinters. Therefore,
sparsely connected networks where bridges are more
prominent will have a chaotic giant component size,
while more densely connected networks will present a
smooth curve until most communities are pruned. This
relationship is illustrated in Fig. S8. Most curves are
smooth until the tail of the distribution, with two no-
table exceptions: Voat’s giant component changes once
the largest insular communities are removed (see Fig. 4),
and the Penumbra’s curve is much “spikier” as a result
of its highly sparse structure.
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Figure S7: Rewiring to decrease user-community degree
assortativity (top) has a small impact on the community-
community projected degree assortativity (middle) and
projected population assortativity (bottom), except for in
the Penumbra; in this sparse network, rewiring first de-
stroys the few active inter-community bridges, then rad-
ically increases the interconnectivity of communities.

Measuring the change in giant component size cap-
tures some of the same features as our disruption metric.
In particular, removing large insular communities may
not change the giant component size if the community
is completely isolated from the giant component, so this
captures some aspect of both the size and topological role
of a community. However, the impact of a community is
boolean: if it touches the giant component, then remov-
ing the community will shrink the giant component by
the size of that community. There is no distinction be-
tween a minimally integrated and tightly integrated com-
munity. Measuring the impact of a community in terms
of fraction of edges severed, rather than component ver-
tex size, offers finer insight into the interplay between
size distribution and network structure.

Figure S8: The giant component shrinks as communi-
ties are pruned from largest to smallest, indicating both
the size of a community and whether it was part of the
giant component before pruning. However, this boolean
inclusion does not account for how well-integrated the
community was among its peers. The y-axis is normal-
ized as a fraction of the un-pruned giant component size,
such that “0.5” indicates the giant component is half the
size of the original.

S8 Comparison to Network Bottlenecking

The Cheeger number [1] is a single-valued metric repre-
senting how large of a “bottleneck” inhibits conductance
across a graph. It is typically written as:

h(G)=min

8
<

:
|∂A|

|A|
: A ✓V (G) , 0 < |A| 1

2
|V (G)|

9
=

;
(3)

Edges crossing the boundary of A

All edges in+across A

A is a subset of vertices of G

A contains at most half of all vertices

Our measurement of how much a community influ-
ences a larger population, and the Cheeger measurement
of whether a community is a “bottleneck” bear some con-
ceptual similarities. Therefore, we compare our metric
to the Cheeger number in two ways. First, we create a
“local Cheeger number,” following an identical equation
|∂A|
|A| , but where A is defined as the set of communities

we are pruning, rather than via a global search. Second,
we estimate bounds on the global Cheeger value of the
graph. Since evaluating the graph conductance of all pos-
sible subsets of vertices is an NP-hard problem [2], it is
impractical to directly measure the Cheeger constant on
most large graphs. Fortunately, the Cheeger inequality
offers upper and lower bounds on the Cheeger number
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based on the second eigenvalue of the normalized Lapla-
cian of the adjacency matrix of G as follows:

l2/2  h(G)
p

2l2

Since they are sparse, these bounds can be calculated
even on large real-world datasets. Unfortunately, in our
tests the bounds are quite wide (see Fig. S9), limiting the
utility of this approximation. We have plotted a compar-
ison of the “local” Cheeger number, bounds of the global
Cheeger number, and our disruption metric, for a variety
of simulated networks.
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Figure S9: Our network disruption metric bears some
conceptual similarity to network bottlenecks, but nei-
ther a “local” Cheeger value measuring the bottleneck ef-
fect of removed communities (top) nor upper- and lower-
bound estimates of the global Cheeger number describe
the same trends.
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