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Figure 1: The influence of a community is tied to both its size and topological role in a network. In the centralized
network, the orange community at the center both has the largest population of blue users, and serves as a bridge be-
tween four other communities. In the decentralized example, communities are of variable size, but none have a pivotal
position to influence their peers. In the ambiguous case, one community is much larger, but the remaining network
matches the “decentralized” example. Neither a distribution of community sizes nor purely structural measurements
like betweenness centrality or graph conductance adequately capture this notion of community-level influence.

Abstract

Decentralized architecture offers a robust and flexible
structure for online platforms, since centralized modera-
tion and computation can be easy to disrupt with targeted
attacks. However, a platform offering a decentralized ar-
chitecture does not guarantee that users will use it in a
decentralized way, and measuring the centralization of
socio-technical networks is not an easy task. In this paper
we introduce a method of characterizing community in-
fluence in terms of how many edges between communi-
ties would be disrupted by a community’s removal. Our
approach provides a careful definition of “centralization”
appropriate in bipartite user-community socio-technical
networks, and demonstrates the inadequacy of more triv-
ial methods for interrogating centralization such as ex-
amining the distribution of community sizes. We use
this method to compare the structure of multiple socio-
technical platforms – Mastodon, git code hosting servers,
BitChute, Usenet, and Voat – and find a range of struc-
tures, from interconnected but decentralized git servers
to an effectively centralized use of Mastodon servers,
as well as multiscale hybrid network structures of dis-

connected Voat subverses. As the ecosystem of socio-
technical platforms diversifies, it becomes critical to not
solely focus on the underlying technologies but also con-
sider the structure of how users interact through the tech-
nical infrastructure.

1 Introduction

Online social spaces are vulnerable to centralized author-
ities making decisions that negatively affect the com-
munity. In 2022, the Software Freedom Conservancy
recommended that all developers migrate their projects
away from GitHub [1], after Microsoft bought the soft-
ware development collaboration platform and used open
source projects as training data for their commercial
CoPilot software, in violation of open source licenses
and community standards. The same year, users and
advertisers departed Twitter after its purchase by Elon
Musk and subsequent changes in community policy and
staffing, including firing content moderators [2] and re-
instating a number of accounts banned for violating the
platform’s hateful content and harassment policies [3].
Reddit moderators have historically engaged in black-
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outs to protest administrative policies [4], and these
trends are ongoing; in June, 2023, Reddit announced
plans to begin charging for API access, sparking warn-
ings from scientists [5], outrage among users, and a
protest across nearly 9,000 subreddits, the long-term ef-
fects of which remain to be seen. As users express
dissatisfaction with platform administrators, they have
sought alternative platforms without centralized control,
leading to the rapid growth of “federated” platforms
like Mastodon [6] and Bluesky1. Alternatively, other
users have promoted self-hosted platforms, such as in-
dependently operated git servers, or peer-to-peer host-
ing solutions such as the Interplanetary File System
(IPFS) or web-torrent video hosting software PeerTube.
Some deplatformed users have also responded by cre-
ating close facsimiles of existing centralized platforms
with extremely permissive content-policies, frequently
called “alt-tech” platforms [7].

What exactly is “centralization” in an online social
network? Does it describe ownership of the platform?
Its technical infrastructure? The creation and enforce-
ment of community norms? The distribution of activity
and reach of content producers? Centralization has long
been ill-defined by academics [8], and “decentralization”
joins as a widely-used but contextually redefined term to-
day [9]. Of particular interest to us is a notion of group
social influence: How much does one community impact
information flow across a platform? For example, how
independent are subreddits on Reddit, and how closely
interlinked are instances on Mastodon, the nascent “de-
centralized Twitter alternative?” Our goal is to measure
the influence of a platform’s sub-communities on their
peers by looking at the structure of socio-technical net-
works, providing a mesoscale metric to quantify central-
ization at an inter-group level.

One common approach to measuring community-level
centralization is through community size-distribution. If
a small oligarchy of Mastodon instances dwarf the pop-
ulation sizes of their peers, then one could presume that
the platform is centralized around these instances. In-
deed, several prior studies on Mastodon use community
size disparity as a starting point, or presuppose that the
largest instances are the most significant and focus their
study on the largest communities [10]–[13]. While the
community size distribution is related to centralization,
assuming they are the same precludes the possibility that
a collection of many smaller instances may be more in-
fluential than the few largest, or that the largest instances
may not represent the platform as a whole.

We reject the assertion that the largest communities
must be the most significant, or that their size alone im-
plies centralization, on the grounds that community size

1Bluesky is still in beta, and while the protocol is federated, only
one instance exists at the time of writing.

does not correlate with the number of cross-community
links in observed real-world networks. In fact, our results
show multiple platforms where the largest communities
are not well integrated with the platform as a whole (dis-
cussed in Sec. 4.1, especially Fig. 4), allowing a more
decentralized network of communities to exist outside of
the largest groups. Under this view, the largest commu-
nities would be the most significant only when they also
act as important information bottlenecks for the entire
system.

To illustrate this discrepancy, consider Fig. 1. In
Fig. 1a the largest community serves as a central
hub, connecting several smaller communities together
through shared membership. In Fig. 1b, community size
is normally distributed, and no community has a pivotal
role as a bridge between its peers. Community size-
distribution and graph-centric metrics like betweenness-
centrality would agree that the former network is central-
ized, while the latter is decentralized. However, Fig. 1c
presents a more complex scenario: the community size
distribution is highly unbalanced, but the largest com-
munity has no impact on the remainder of the network.
Adding one edge to create a complete graph would grant
the largest community a high betweenness-centrality be-
cause of its pivotal role in connecting so many users to
the rest of the graph; but this does not match our intuition
that the largest community has a small role in the rest of
the network.

We propose a definition of centralization meant to cap-
ture the alignment between rankings of community size
and information bottlenecks. To do so, we combine the-
oretical ideas from graph theory on bottlenecks and ap-
plied concepts from network science about network re-
silience. Our metric then measures how removing a com-
munity would impact users within remaining communi-
ties, based on the number of “bridges” between commu-
nities. We study a variety of real and simulated networks
with this method to examine platform behavior under a
range of conditions, and we compare our metric to ex-
isting measurements of centralization and network “bot-
tlenecks.” Finally, we discuss how this work contributes
to broader discussions of centralization online, and how
techniques like ours can be extended with richer interac-
tion data.

2 Prior Work

In the context of online platforms, centralization is some-
times defined in terms of decision-making power, or who
has the authority to make what kinds of decisions about
the use of the platform. This definition can be traced to
Elinor Ostrom’s work on Institutional Analysis and De-
velopment [14], which describes “layers” of decisions,
from operational rules (elementary actions any user can
perform), to collective rules (the context in which users
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operate and interact, such as the Twitter feed or the
Amazon marketplace), to constitutional rules (the “meta”
rules through which the system changes itself). Mod-
ern research on platform design often assesses who has
decision-making power, and what levers of change are
available to different categories of participants [15], [16].

While qualitative studies examine power structures
through analyzing governance and rule sets [17], [18],
network science infers structure through the observed in-
teractions between humans [8], [19]. We quantify cen-
tralization using attributes that fall into three categories:
vertex-level attributes, cluster-level attributes, and graph-
level attributes. Vertex-level attributes like betweenness
centrality [8] or eigenvector centrality [20] measure the
prominence of a particular node in terms of how well it is
connected to its peers, or how many paths flow through
the node. Cluster-level attributes describe groups of ver-
tices, such as the size of the population that contains a
particular attribute, or the assortativity describing how
likely vertices with a particular attribute are to be con-
nected to one another. Graph-level attributes describe
aspects that span the entire network, including diame-
ter, density, and graph conductance [21]. Quantifiability
should not be conflated with objectivity; the modeling
choice of what entities are included as vertices and what
relationships are represented as edges or attributes pre-
supposes what can be considered influential or central-
ized [22].

Another thread of research tries to join the social
theory of centralization and graph theoretical metrics.
Fan and Zhang [18] distinguish between the technical
underpinnings of a network and its social layers, fo-
cusing on community-run moderation in infrastructure-
centralized (Slack, Discord) and self-hosted (Minecraft)
services. Prior Mastodon research also bridges this gap,
including both geographic and data-center distribution
of instances [10], important for understanding resiliency
to disruption or power-outage. This approach aligns
with notions of network robustness where centraliza-
tion can be measured by how a network breaks down
under targeted pruning of central nodes [23]. Other
studies on Mastodon also integrate its social interaction
graph [13], important for understanding the influence of
sub-communities and their administrators on discourse.
Studies on the social structure of Mastodon primarily
focus on individual-centralization, such as a “border-
index” of what fraction of a user’s neighbors are on a
foreign instance [12] and whether some users serve as
critical bridges for information flow between instances
[24], or community-centralization, such as how cluster-
ing coefficients differ between communities (instances)
[11]. Our work intends to add to these options, by con-
sidering both a community-level centralization metric of
how much influence one community has on the broader

platform, and a graph-level centralization score of how
quickly a network deteriorates as its largest communi-
ties are removed, indicating how much it tends towards
monopoly or oligopoly.

Finally, authors like Agre [25] push back against a
Boolean or spectrum from “centralized” to “decentral-
ized,” and view platforms as layers of centralization
and decentralization. Their primary example is eBay, a
centrally-controlled marketplace operated by one com-
pany, but containing a decentralized network of buyers
and sellers. Other studies have built off of this idea,
proposing the creation of decentralized “digital juries”
on infrastructure-centralized platforms [18], or creating
democratic governance bots with flexible bylaws over-
layed on centrally-hosted chat services like Slack [26].
We pose that this layered framework also applies to
thinking about complex networks like Fig. 1c, which
have both centralized and decentralized components that
should be considered independently.

3 Methods and Materials

We introduce our metric in Sec. 3.1, and two data sets:
five real world networks that encompass a breadth of
configurations (Sec. 3.2), and a set of common synthetic
networks for reference (Sec. 3.3).

3.1 Measuring centralization: disruption

curves

Prior studies on centralization of social networks often
focus on graph-level attributes such as detecting compo-
nents, the size of the giant component, modularity, den-
sity, degree distribution [27]. Others may use “bottle-
neck” metrics like graph conductance [21] to identify
bridges and key clusters. These metrics are most ap-
pealing in unipartite settings where the structure of the
network is not prescribed. However, we focus on bipar-
tite graphs where communities are well defined, such as
subreddits, Mastodon instances, or newsgroups. In these
contexts, we are not attempting to infer the number or
boundaries of communities, but to measure how influen-
tial the known communities are on their neighbors. The
size distribution of communities tells us how large a sub-
group is, but does not capture the overlap between com-
munities. A graph-wide modularity score describes how
well-partitioned the graph is into clusters, and so approx-
imates how insular communities are, but cannot provide
more nuance as to whether the largest communities are
more integrated than smaller ones, whether small com-
munities are well connected to larger peers but not to
each other, or other topological features.

We propose that the influence of a community should
be measured in terms of how users outside the commu-
nity would be impacted by its absence. In other words, a
community’s influence should be proportional not to its
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size, but to the number of bridges between it and other
communities. Or, in graph theoretic terms, what fraction
of edges would be cut by removing a community, not
counting users that do not participate outside the commu-
nity. More succinctly, “what percentage of edges from
surviving vertices would be cut by removing a commu-
nity?”

We measure disruption cumulatively, rather than dis-
cretely per-community. This allows us to answer ques-
tions like “how influential are the largest three commu-
nities on the rest of the platform?” Since “oligarchies”
of large and densely interconnected communities may be
common, a cumulative metric is more useful than mea-
suring the influence of a single community on the rest of
the oligarchy.

Formally, we define a set of communities that are be-
ing cut, A, with associated edges |A|. Each user has a
set of edges to one or more communities. If users only
have edges to communities in A, then the user is removed
along with A. Surviving users with an edge to at least
one remaining community are denoted S, with total edges
|S|, and edges to cut communities in A denoted ∂S. The
disruption curve is calculated as ∂S/|S|. This notation
was chosen for its similarity to the Cheeger number [21],
stressing how our metric measures the alignment of com-
munity size and information bottleneck. We addition-
ally outline the algorithm as pseudocode in supplemental
Sec. S1.

Our disruption curve metric is intended for bipartite
networks, where communities are clearly distinguishable
and users can participate in multiple communities. How-
ever, some consideration is also given to applying our
metric to unipartite settings in Sec. S2.

We plot disruption similarly to a cumulative disruption
function (CDF), where the x-axis represents the number
of communities removed, cumulatively ordered by de-
gree, and the y-axis represents the fraction of edges from
surviving users that have been cut. In other words, the
x-axis is the size of A as a fraction of all communities
in the graph, and the y-axis is ∂S/|S|, where both the
numerator and denominator are dependent on |A|.

While disruption curves offer insight into the role of
the largest communities on a platform, some readers
may desire a scalar summary statistic to describe how
“centralized” a platform is under our metric. For these
scenarios we recommend calculating the area under the
curve, as shown in Figs. 2b and 3b. The Disruption AUC
(DAUC) does not indicate how much any particular com-
munity influences its peers, but summarizes whether a
network is prone to disruption if its largest communities
are removed. Methodological choices for calculating the
DAUC are discussed in Sec. S3.

3.2 Real-World Network Data

We analyze five real-world datasets, each describing on-
line social interactions in bipartite configurations where
vertices represent either “users” or “communities.” We
utilize a 2021 scrape of the Mastodon follow graph [11].
Mastodon is a Twitter alternative where users are located
on one of thousands of “instances,” which are Twitter-
like servers with their own administrators and content
policies. However, Mastodon users can follow users
on other instances, exchanging content between the two
communities, so long as the servers are “federated” (will-
ing to exchange content). For a second example of a
platform with distributed servers, we include the Penum-
bra of open-source [28], a data set of independent git
servers (not GitHub or GitLab), and users that contribute
to repositories on each server. We also include an in-
teraction graph from BitChute [29], an alt-tech YouTube
alternative, consisting of users and the channels (video
uploaders) whose videos they commented on. We utilize
a similar scrape of Voat [30], an alt-tech Reddit alter-
native active until late 2020, consisting of users and the
“subverses” (subreddits) they commented in. We addi-
tionally include an archive of Polish Usenet groups [31],
providing a much older but similarly structured platform
for comparison. Details on the vertex and edge defini-
tions for each network are included in Table 1, and the
size of each network is listed in Table 2.

We selected these platforms because they have clear
bipartite user and community representations, their data
is readily available, and each platform is small enough to
obtain a nearly-complete sample. Sub-sampling a larger
platform like Reddit is likely to miss lower-population
or lower-activity sub-communities, and we are particu-
larly interest in the interactions between smaller com-
munities. The resulting dataset encompasses a variety of
approaches to hosting and community governance, pro-
viding a spectrum of “centralization.”

3.3 Synthetic Network Data

To understand disruption curves and contextualize our
real-world results, we examine a variety of well under-
stood synthetic network topologies.

First we construct a bipartite star network, as a de-
fault example of a network centralized around a single
hub. In our example plots, we construct a graph with
150 communities and 3000 users, such that every user
has an edge to two communities: the central hub, and
one other, assigned uniformly. Removing the hub elim-
inates 50% of all edges, and removing any subsequent
communities incurs no additional disruption, because all
impacted users will have a degree of zero and be pruned
from the graph (see Fig. 3a). This graph type is there-
fore highly centralized but has a decentralized periphery
after the removal of the central community, illustrating
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Platform Community Definition Edge Definition Edge weight

Mastodon Mastodon Instances Between each user and every instance on
which they follow users

The number of users fol-
lowed on an instance

Penumbra A git server Between a user (identified by email) and
each server on which they have contributed
to a repository

The number of repositories
committed to on each server

BitChute BitChute channels Between each user and every channel they
have commented on videos from

The number of comments
made

Voat A Voat “subverse” Between each user and subverses they’ve
participated in

Number of comments made
in a subverse

Usenet A Usenet newsgroup Between each user and every newsgroup
they have posted in

The number of posts made

Table 1: Definitions of communities and edges for each platform examined

Platform Comms. Users Edges

Mastodon 3,825 479,425 5,649,762
Penumbra 841 41,619 108,038
BitChute 29,686 299,735 11,549,058
Voat 7,515 3,624,486 16,263,309
Usenet 333 2,080,335 58,133,610

Table 2: Population size of each network in terms of
community count, user count, and relationship edge
count, before compressing duplicate edges into weighted
edges

how different topologies can co-exist in the same net-
work, muddying the definition of “centralization.”

We then test disruption on a variety of bipartite net-
works with power-law degree distributions. We first
adapt the Barabási-Albert preferential attachment model
to a bipartite setting, initializing a network with 300
empty communities and introducing users that connect
to a given community with probability proportional to
their size plus one. We also introduce a range of bipar-
tite configuration models: in each, we assign a degree to
each community drawn from a power law with a speci-
fied g exponent. For each community, we create edges
according to degree, connecting the community to users
uniformly randomly without replacement. Therefore, we
do not control for user degree or assortativity, only for the
size of communities. Each of these networks produces a
curve that slowly decays towards a diagonal, implying
that removing the largest communities has some dispro-
portionate impact, after which removing additional com-
munities has a less pronounced result.

For a contrast from power-law degree distributions,
we also adapt the Erdős-Rényi model to a bipartite set-
ting, by creating vertices for communities and users, then
creating all possible edges with a probability p (in our
tests, p= 0.05), while preserving the bipartite constraint.
These networks produce a disruption curve with a sec-

ond derivative near zero, indicating that most communi-
ties have near-equal influence on the population, and so
removing the largest communities does not have a much
larger impact than removing subsequent communities.

Lastly, we adapt the Watts-Strogatz small-world
model to a bipartite setting. To accomplish this, we first
produce a unipartite network with desired neighborhood
size (n = 5) and edge density (p = 0.05) parameters.
Then we apply a clustering algorithm (in our examples
we have used weighted community label propagation) to
place each user in one community. We create a vertex for
each detected community, and replace all user-user edges
with user-community edges. This process is described in
greater detail in Sec. S2 and an example is illustrated in
Fig. S1. These networks have the most uniform commu-
nity size distribution of any we tested, and their disrup-
tion curves are similar to those of Erdős-Rényi networks,
with slightly more variability.

For Erdős-Rényi and configuration model networks, it
is possible to create a closed-form solution for cumula-
tive disruption. This is not our emphasis, because we are
primarily concerned with analyzing real-world networks
for which network generating functions are not available,
but we detail this formalism in supplemental Sec. S5. We
also include further descriptions and reference visualiza-
tions for bipartite near-star and bipartite power-law net-
works in Sec. S4.

4 Results

We plot the cumulative population size, disruption curve,
and disruption AUC for real-world networks in Fig. 2,
and plot the same results for synthetic network data in
Fig. 3. We first focus on discrepancies between the size
distribution and disruption curves for real networks in
Sec. 4.1, then return attention to synthetic network data
when we examine the role of assortativity in Sec. 4.2.
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(a) Community size distribution and disruption curves (b) Area under the disruption curve (DAUC)

Figure 2: Summary measures of centralization. (a) Our measure of community disruption (bottom) does not corre-
late with the population distribution of communities (top). (b) The area under the disruption curve (DAUC) provides a
summary statistic of the disruption curve that reinforces how network structure combined with community size provide
greater insight into centralization (measurement details in Sec. S3). Here, panel (a) consists of cumulative distribution
plots of population and disruption, where the top subplot is a CDF of the platform population as smaller communi-
ties are included, and the bottom subplot shows how networks are damaged as more of the largest communities are
removed. Each line represents a different network, using the color key from panel b.

4.1 Comparison to Size Distribution

Upon comparing the size distribution and disruption
curve in Fig. 2a, it is apparent that the community size
distribution is insufficient to describe the structure of a
network. Voat has the most skewed population distribu-
tion: almost all users participate in the largest commu-
nity, yet the network does not experience significant dis-
ruption until the largest three communities are removed.
Mastodon and BitChute have the next most skewed size
distributions, but there is a large distance between the
proportional sizes of their largest communities, and al-
most identical disruption curves as those communities
are removed. By population distribution, the Penumbra
appears to be more skewed towards its largest git servers
than Usenet is towards its largest newsgroups. This is
not mirrored in disruption curves, where Usenet has a
consistently higher disruption than the Penumbra.

To explain these discrepancies, we examine each net-
work in greater detail. Voat was a Reddit-like platform
where users commented and posted in one or more “sub-
verses.” While users chose to subscribe from among
7515 public subverses, new accounts were automatically
subscribed to a set of 27 subverses by default. This “de-
fault subscription” has no parallel on other platforms we
examined. Since these default subverses have an auto-
matic population, they are more likely to receive engage-
ment than subverses that must be discovered according
to a user’s area of interest, and we may expect them to

be densely connected with most users on the platform.
However, the largest two subverses on Voat by number
of unique users were not default subverses; v/QRV was
a QAnon conspiracy group, and v/8chan was a right-
wing news and discussion forum whose name references
the white supremacist imageboard 8chan (now “8kun”).
Both subverses were highly insular, with little popula-
tion overlap with the rest of the platform, as illustrated in
Fig. 4. Therefore, it is only when we remove the third-
largest subverse, v/news, that we see a large impact on
remaining users on the site.

The Penumbra of open-source represents software de-
velopment on git servers outside of GitHub and the pri-
mary GitLab instance. Each community represents a git
servers with one or more public repositories, and edges
indicate that a user (identified by email address) con-
tributed to a repository on a server. Servers are often
created per-organization; for example, the Debian Linux
distribution hosts their own GitLab server at salsa.

debian.org, and the University of Vermont hosts a Git-
Lab server at gitlab.uvm.edu. Users often contribute
to multiple repositories on a single server, but connec-
tions between servers are extremely sparse. This sparsity
is responsible for the “spikes” in the Penumbra’s disrup-
tion curve; removing a git server may sever an edge to
some users, and removing a second, related server may
prune all remaining edges to those same users. When
the cross-server collaborative users are removed, the im-

6

salsa.debian.org
salsa.debian.org
gitlab.uvm.edu


(a) Community size distribution and disruption curves (b) Area under the disruption curve (DAUC)

Figure 3: In simulated networks with a variety of degree distributions, the disruption curves for each network much
more closely match the population distribution (Fig. 3a), suggesting that non-degree network attributes such as assor-
tativity play a crucial role in determining centralization. As in Fig. 2, the left figure represents cumulative population
and disruption as more communities are considered. Each line represents a network sharing the color-key in the right
figure. Simulated networks were generated 100 times, and the mean and a 95% confidence interval are shown in both
figures.

pact on the remaining less-collaborative community de-
creases. In all other networks enough users have a suffi-
ciently high cross-community degree that disruption only
increases as communities are removed.

Rather than examining the cumulative community size
distribution, one could instead examine the size of the gi-
ant component of each network. The giant component
will shrink as communities are cumulatively removed,
providing another means of examining the influence of
large communities. This is conceptually similar to our
disruption metric, with a critical difference: inclusion of
a community in the giant component is Boolean. If a
community is completely insulated from the giant com-
ponent of a network, then its removal will have no effect
on the component size; otherwise the component will
shrink by the size of the users removed with the commu-
nity. Our metric provides greater flexibility for measur-
ing how well integrated a community is among its peers.
Measurement of the giant component size is discussed
further in supplementary Sec. S7.

In summary, the community size distribution cannot
adequately describe the topology of a platform because
it does not account for features including assortativity or
sparsity.

4.2 Assortativity and Centralization

We expect that degree assortativity (or degree-degree
correlation) plays a significant role in the differences
between observed community disruption (Fig. 2a) and
network behavior under controlled degree distributions

(Fig. 3a). In a purely random setting, users are likely
to have edges to multiple large communities, because
most edge stubs in a configuration model come from
high-degree communities. In real social settings, the
content of communities may inhibit assortativity, as in
Voat, where the largest two communities are highly in-
sular (see Fig. 4), creating a large disparity between the
community size distribution and disruption metric.

To explore this hypothesis, we randomly rewired each
social network to increase assortativity. We select pairs
of edges uniformly without replacement, and swap the
communities of the edges if it would increase user-
community degree assortativity. We continue this pro-
cess until we have rewired a desired percentage of edges;
if we exhaust the edge supply before finding sufficient
valid swaps, we re-shuffle the edge list and continue
drawing. For each rewired network we calculate its dis-
ruption and the area under the disruption curve, as in
Fig. 2b, and plot the change in AUC during rewiring in
Fig. 5.

This experiment is useful in distinguishing the idea of
network centralization from classic ideas of monopoly.
These are two different, but related, problems that are
easy to confuse when focusing solely on summary statis-
tics like community size distributions. When a network
consists of disconnected communities, it is decentral-
ized under the disruption metric regardless of the size
distribution of these communities. This conclusion fol-
lows from our definition of centralization since remov-
ing a community in a sparse (or disconnected) network,
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Figure 4: The two largest Voat communities (‘QRV’ and
‘8chan’) are dramatically larger than their peers, but have
almost no overlap in population, making community size
a poor proxy for platform-wide influence or centraliza-
tion. In this network visualization, nodes represent Voat
“subverses,” and edges represent at least thirty shared
users active in two communities. Node size correlates
with user count, and color correlates with strength; i.e.
the level of overlap with neighboring communities. The
purple communities at the center are default subverses
all new users are subscribed to (“news,” “whatever,” etc),
surrounding pink and orange communities are popular
with lots of user overlap. The largest two communities,
“QRV” and “8chan,” have almost no user overlap with
other communities and are rendered to the right.

has little (or no) impact on other communities. This
rewiring experiment highlights this logic: As networks
get rewired to increase correlations, we increase the
likelihood of having all the activity of a user focused
on a single community and therefore progressively dis-
connect the community and decentralize the network.
The only exception is Voat, whose initial state contains
large disconnected communities that can get coupled to
the rest of the network by rewiring, before being re-
disconnected as we rewire more and more. Small corre-
lations in large networks can therefore increase central-
ization, since large communities can broker more bridges
when they contain well-connected users; while strong
correlations in smaller networks can decrease centraliza-
tion by focusing user activity on single communities.

We analyze other assortativity metrics in additional
detail in the supplemental material, Sec. S6, as well as
a comparison to the Cheeger number “bottleneck” met-
ric [21], in Sec. S8. We also confirm our intuition about
the role of weak correlations with mathematical analysis

Figure 5: Increasing user-community degree assortativ-
ity through edge-rewiring increases the influence of the
largest communities in highly insular (Voat) or sparse
settings (Penumbra), but decreases disruption in all net-
works as increased rewirings eliminate cross-community
edges and yield insular and sparse networks. Y-axis rep-
resents disruption AUC (see Fig. 2b), so that the slope
shows change in disruption AUC as networks are rewired
to increase user-community degree assortativity.

of random infinite networks in supplemental Sec. S5.

5 Conclusion and Future Work

We have added to the wealth of centralization metrics by
proposing a mesoscale measurement that indicates how
much influence one sub-community has over a broader
network, by accounting for how many edges to remain-
ing users would be severed if a community were re-
moved. This metric allows us to differentiate between
networks with a substantial community size-imbalance,
and networks where the largest communities play a core
structural role in their smaller peers. We extend our met-
ric to create a graph-level measurement that indicates
how “oligopic” a network is, or how well-integrated its
largest communities are with the population at large.

We have utilized our disruption metric to examine
a range of real-world social networks, comparing their
network topology, distribution of community sizes, and
the influence of those communities. We find that some
platforms, like Voat, are much less centralized than
their skewed community-size distribution would suggest,
while others, like Usenet and the Penumbra of Open-
Source, have similar size distributions and widely diver-
gent disruption curves. Mastodon, while vocally sup-
portive of decentralization, has a disruption curve mostly
characterized by the skewed population distribution of its
sub-communities and is therefore relatively centralized.

Using simulated networks with a range of degree dis-
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tributions, and rewiring techniques to adjust assortativity,
we have begun to explore the interplay between com-
munity size, structure, and community-level centraliza-
tion. However, we limited ourselves to traditional net-
work generative models like Erdős-Rényi and power-law
configuration model networks. Future research could
directly simulate networks with chimeric centralization
which combine decentralized and centralized compo-
nents to more realistically represent the diversity ob-
served in social networks.

Our network representations are oversimplified in that
we assume that each edge on a network represents a path
of information flow. However, one user following an-
other represents potential information flow; a bridge be-
tween two communities is only realized if the following
user is online and chooses to propagate information from
the edge to their own followers and instance.

More thorough research should examine how many
potential bridges are utilized by, for example, moni-
toring the number of “boosts” (Mastodon’s equivalent
to “retweets”) across instance boundaries on Mastodon.
Observed information spread, and examining the recep-
tion of cross-pollinated ideas in non-originating com-
munities, would provide much greater insight into how
multi-community platforms function in practice.
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