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Figure 1: Layering social communication data onto the technical network structure of an open source project. The main
network is produced by projecting the account-commit-file data of the CPython repository on a “graph of who collaborates
with whom” which unveils the modular structure of the project and community (nodes are colored to highlight this using
Louvain modularity maximization [4]). We then zoom on a particular module to highlight the role of certain nodes in the
social layer of the community using our mailing list data and find that 6 of the top 10 nodes ranked by counts of toxic words
are found in this single module.

ABSTRACT
Communication surrounding the development of an open source
project largely occurs outside the software repository itself. His-
torically, large communities often used a collection of mailing lists
to discuss the different aspects of their projects. Multimodal tool
use, with software development and communication happening on
different channels, complicates the study of open source projects
as a sociotechnical system. Here, we combine and standardize mail-
ing lists of the Python community, resulting in 954,287 messages
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from 1995 to the present. We share all scraping and cleaning code
to facilitate reproduction of this work, as well as smaller datasets
for the Golang (122,721 messages), Angular (20,041 messages) and
Node.js (12,514 messages) communities. To showcase the useful-
ness of these data, we focus on the CPython repository and merge
the technical layer (which GitHub account works on what file and
with whom) with the social layer (messages from unique email
addresses) by identifying 33% of GitHub contributors in the mailing
list data. We then explore correlations between the valence of so-
cial messaging and the structure of the collaboration network. We
discuss how these data provide a laboratory to test theories from
standard organizational science in large open source projects.

CCS CONCEPTS
• Human-centered computing→ Social network analysis; •
Software and its engineering → Open source model; • Applied
computing → Document management and text processing.
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1 INTRODUCTION
The practice of mining and analysing software repositories provides
a unique window into software development and the social practice
of problem solving as a whole. Unfortunately, these analyses often
comewith the caveat that much of the collaborative work other than
coding appears in public but away from the software repository
itself [11]. The community relies on data streams that, unlike git
history for example, do not come in standard formats [15]: bug
reports, mailing lists, online forums, etc.

For large open source communities (OSC), social interactions
are rarely limited to a single platform [31], from direct messages, to
targeted forums or massively distributed mailing lists. Importantly,
discussions there concern a much wider range of contributions
to the community than coding itself, with efforts around the de-
velopment of norm for the community or organisation of social
events [24, 33? ]. These interactions have been shown to be criti-
cal to the growth and health of the community, with constructive
and timely replies being positively correlated with future participa-
tion [16].

Data describing social interactions within OSCs are notoriously
hard to analyse given their unstructured format [15, 26]. Past work
has therefore focused on manual readings of samples of messages,
for example from newcomers [16] or major developers and commu-
nity members [26], or on automated analysis of specific windows
chosen for their fixed format [8]. Altogether, several challenges
exist to mining mailing lists [3, 14]. Here, we present data with
scraping software to address two specific problems: Large com-
munities tend to use multiple mailing lists for different topics (e.g.
development, ideas, announcements, etc.) and these different lists
do not operate with the same software, encoding, or data structure.

2 THE OCEAN MAILING LIST DATA
We present the data collected as part of the Open-source Complex
Ecosystem And Networks (OCEAN) partnership between Google
Open Source and the University of Vermont. Our code base for data
collection is hosted at https://github.com/google/project-OCEAN
and contains a suite of utilities to compile mailing lists based on
their hosting service. This is currently limited to mailing lists hosted
through Mailman, Google Groups, or Pipermail.

We include 14 mailing lists as part of this initial release but the
data set could be straightforwardly expended as needed. We here
show all lists currently available, in chronological order:

(1) pipermail-python-dev, started on 1995-03,
(2) pipermail-python-list, started on 1999-02,
(3) pipermail-python-announce-list, started on 1999-04,
(4) mailman-python-announce-list, started on 1999-04,

(5) mailman-python-dev, started on 1999-04,
(6) mailman-python-ideas, started on 2006-12,
(7) pipermail-python-ideas, started on 2006-12,
(8) gg-nodejs, started on 2009-06,
(9) gg-angular, started on 2009-09,
(10) gg-golang-checkins, started on 2009-11,
(11) gg-golang-dev, started on 2009-11,
(12) gg-golang-nuts, started on 2009-11,
(13) gg-golang-announce, started on 2011-05,
(14) gg-golang-codereviews, started on 2013-12.

This database was aggregated by consulting with open source com-
munity members to identify both active mailing lists used by the
selected projects, as well as mailing lists which are known to contain
historical decision making information.

Our codebase then standardizes date format, text information
and origins of messages under one large database per community,
available at https://figshare.com/s/f708c2d0e54b53cdff93. The most
important fields of our data sets are as follows:

Field Type Example
from_name string Example Person
from_email string example.person@gmail.con
to_name string python-dev
to_email string python-dev@python.org

message_id string <cc76ef2 ... @googlegroups.com>
refs.ref string <df1a897f ... @googlegroups.com>
subject string parameters not working
date datetime 2016-05-02T11:45:35

body_text string I’m trying to. . .
original_url string https://groups.google.com/. . .
In the earlier years of the archives, the date format used by the

mail clients was quite variable. While our tool supports a series of
queries to parse dates, “to,” “from,” and references fields, it does not
always succeed, so we also preserved the raw data under additional
fields to allow easy format checks.

Key descriptive statistics of the mailing lists data are shown in
Fig. 2. In terms of volume of both messages and newcomers, all
mailings lists most recently peaked between 2011 and 2015. Across
all communities, the ratio of newcomers to established addresses
tend to be relatively fixed but varied with some mailing lists driven
by newcomers (Angular) or existing addresses (GoLang). In all cases,
we find skewed distributions of messages per unique email address,
with outliers most often representing bots. These bots can be easily
identified within the data, but are preserved as they often forward
actual social messages from other platforms.

3 CURRENT USE OF THE DATABASE
The OCEAN mailing list database was recently shared with re-
searchers at Galois, inc. as part of a DARPA funded project on the
impact of toxicity on collaborations in large and important open
source projects. As part of this project, we here focus on a subset
of the Python community: the CPython repository containing the
reference implementation of the language and where most Python
development occurs. The database was leveraged as one element
in a new tool, the LAGOON platform for Leveraging AI to Guard
Online Open-source Networks, which does identity merging and
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Figure 2: (top row) Volumes of addresses and messages of different mailing list datasets through time. Messages and addresses
are on different scales. (bottom row) Histograms of messages per address. Three addresses with outlying volumes of automated
messages (7,592, 19,492, and 33,660) are not shown in the GoLang histogram (lower left).

comes packaged with a UI for inspecting and analyzing the ingested
open source community [9]. Through this tool, our collaboration
highlights that 33.2% of all CPython contributors can be identified
in the mailing list data. This provides us with a large sampling of
the content and valence of discussions within the community.

As a simple case study, we can tag CPython contributors by the
amount of toxic language they send on the mailing list. Previous
research in management science has explored the positive associa-
tion between power and negative ties [17], and it is unclear if these
results generalize to OSS communities which lack clear hierarchies.
For simplicity, we here study this issue with a naive definition
of toxic language, based on a previous study which developed an
annotated corpus and lexicon for harassment research [25]. This
corpus was manually edited to account for words which tend to
have a different meaning in technical discussions than in colloquial
language (e.g. “primitive”). We then summarize the social messages
of a given users simply by counting how many toxic words they
have used while messaging the community.

In Fig. 1, we show where toxic nodes are found within the collab-
oration network of CPython, a projection of the account-commit-
files network on the set of edges of accounts that have touched files
in common). To do so, we first identify modules (e.g. teams) in the
community using the Louvain modularity maximization algorithm
[4]. We then find that toxic language is not randomly distributed
within the collaboration network of CPython, with 6 of the top
10 nodes ranked by counts of toxic words found within a single
central module.

In Fig. 3, we quantify the correlations between toxic word usage
and network structure in the collaboration network. In the right
panel we first find, unsurprisingly, that (1) accounts that send more
messages are more likely to be flagged as toxic (more opportunity
to use toxic words) and that (2) regardless of toxicity, accounts that
send more messages also tend to have more collaborators in the
technical layer of the network. More surprisingly, in the middle
panel, we find that (3) toxic accounts tend to gain less collaborators
for every commit to the repository. This result is further explored
in the right panel where we see that accounts that are toxic in a
given year tend to have a smaller average number of collaborators
per file.

Further research is needed to fully understand these results and,
in particular, to delineate between toxic accounts that as contrib-
utors are central technical dependencies and toxic accounts that
operate on the periphery of a project and offer minimal contri-
butions. Many different mechanisms can be postulated to explain
the observed correlations: perhaps having few collaborators lead
to toxic languages, or conversely, toxic languages lead to disen-
gagement of collaborators. Altogether, these simple correlations
showcase the value of merging social communication data like mail-
ing lists with technical data from the repository itself, but warrant
further research to disentangle the mechanisms at play.

4 ADDITIONAL RELATEDWORK
There are several data sets aiming to capture activities around
software development outside of its code base. Besides the analyses

3
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Figure 3: Correlations between activity in the social (messages and toxicity) and technical (commits, collaborators or “degree”,
and files) layers of the CPython repository. Degree here refers to the number of co-editors that users have in the projected
version of the user-commit-file network. We find that accounts that use toxic words tend to have less collaborators per commit
and per file than accounts that do not.

of mailing lists already mentioned [3, 10, 14, 30], relevant studies
includes discussions on unusual platforms such as blogs [30], Slack
messages [6, 7] or IRC messages [28, 34], though the data for these
studies is not always made available in easy to parse format, if at
all. Going further afield, datasets of Stack Overflow messages and
events [1, 2, 32] are also related to our work in that they pertain to
a community and are disconnected from the code base. However,
discussions on Stack Overflow focus on using the software rather
than developing it [18], and thus capture a different aspect of a
community’s behavior.

Our example application—natural language processing and sen-
timent analysis of data pertaining to open source communities—is
also a very active field [5]. Work in this area uses diverse data
source such as commit message [29], issue reports [19, 21], email
lists [26, 27], or Q&A platform, to name a few [5]. The main chal-
lenges here is the unusual nature of technical communication,
which differs significantly from the type of text usually analyzed
with NLP [20].

5 CHALLENGES, LIMITATIONS, AND
IMPROVEMENTS

From the projects included in our data repository, we find the
practice of using mailing lists as the main communication channel
for open source projects has been steadily decreasing in popularity
over the last decade or so. This presents an obvious limitation of
relying solely on mailing lists as a proxy for social interactions
within a community, but also an provides an archival opportunity
as our database creates a largely static window into the past social
interactions around current major projects in open source software
development. For continued study of active projects within these
communities, our data will need to be supplemented by forum
discussions, bug reports, and newer platform conversation channels
such as messaging platforms, social media, and blog rolls [12, 30].

In addition to the raw text data associated with messages, we
expect to process the mailing lists to automatically identify text
structures such as email signatures, code and quotes in replies [23].
Quotes, in particular, are potentially powerful as they provide a
window intomoderation norms and practices. Indeed, targeted toxic

emails are often moderated and do not appear as a sent message in
the mailing list, but targeted recipients can still receive this message
directly rather than through the list. For example, by sending the
email to both targetemail.com and to the mailing list, the target
receives the email regardless of moderation. The target can then
reply to the message, which will be quoted in the reply therefore
bypassing the original moderation. Identifying and flagging these
quotes will open interesting avenues of research as moderated texts
are virtually never included in available data.

A key point of discussion among the project team was how to
address personal identifiable information that is already accessi-
ble from the data sources, available under the platform terms and
conditions, and shared following the community guidelines. Best
practices for aggregating, sharing, and working with open source
data gleaned from community projects is still mixed [13]; while
transparency is valued in open source, communities also value their
personal privacy while working in open spaces. Since we are shar-
ing this database as both a dataset, the list of sources this data was
aggregated from, and the source code used to produce it, the team
chose to follow the CHAOSS Community Data Policy, which states
that “our community data is part of our public history,” disclosing
all data as assembled from the original sources to “preserve the
authenticity of [our] community data” [22].
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