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History



• Exceptionally prolific and 
influential

• He introduced functions!

• First to write f(x)

Leonhard Euler

Swiss mathematician

The Euler Archive

866 works, first publication age 19

http://www.math.dartmouth.edu/~euler/
http://www.math.dartmouth.edu/~euler/
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Seven bridges

“Can I walk through the city and cross each 
of the seven bridges exactly once?”

Königsberg



Seven bridges

Abstract away details



Seven bridges



Seven bridges

Graph theory!



Seven bridges

Graph theory!

A graph is an object 
consisting of:

nodes (vertices)

links (edges) between
those nodes



Four-color theorem

“To color any map of countries without adjacent 
countries sharing the same color requires only four 

colors”



Four-color theorem

“To color any map of countries without adjacent 
countries sharing the same color requires only four 

colors”



Examples of networks
and network data
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Power grid



Power grid

Nodes: power 
generators/
consumers

Understand cascading failures 
and blackouts



Power grid

Nodes: power 
generators/
consumers

Links: 
transmission 
lines

Understand cascading failures 
and blackouts



Power grid

Understand cascading failures 
and blackouts



Road networks

International roads 1990

energy.gov



Road networks

google maps

Build network?



Road networks

google maps

Build network?

Each node represents
an intersection

Roads connecting 
intersections form 
links



Road networks

google maps

Alternative



Road networks

google maps

Alternative

Each node represents
a road

Two roads are linked 
when you can drive 
directly from one to 
the other



Road networks

google maps

Each node represents
a road

Two roads are linked 
when you can drive 
directly from one to 
the other

Route planning

Alternative



Air travel

gleamviz.org



Air travel

gleamviz.org

nodes = airports

links = direct flights
between airports



Air travel

Grady, et al. Nat Commun, 2012



Air travel

Disease spreading
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Telecommunications

1901!

Undersea cables



Telecommunications

How many lines do we 
need for our phone calls?

wikipedia



Telecommunications

How many lines do we 
need for our phone calls?

Queueing Theory

wikipedia
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Mobile phone data
the interplay between the regular and thus pre-
dictable and the random and thus unforeseeable,
probing through human mobility the fundamen-
tal limits that characterize the predictability of
human dynamics.

At present, the most detailed information on
human mobility across a large segment of the
population is collected by mobile phone carriers
(4, 16–21). Mobile carriers record the closest
mobile tower each time the user uses his or her
phone. Here we use a 3-month-long record,
collected for billing purposes and anonymized
by the data source, capturing the mobility
patterns of 50,000 individuals chosen from ~10
million anonymous mobile phone users with the
criteria that they visit more than two locations
(tower vicinity) during the observational period
and that their average call frequency f is ≥0.5
hour−1 [(22) sections S1 and S2].

The trajectories of two users with widely
different mobility patterns are shown in Fig. 1A:
The first user moves in the vicinity of N = 22
towers in a 30-km region, whereas the second
visits as many as N = 76 towers spanning
approximately a 90-km neighborhood. To under-
stand the recurrent nature of individual mobility,
we assigned to each user a mobility network (23)
(Fig. 1B), in which nodes are the locations visited
by the user (each location corresponding to a

mobile phone tower, with about a 3-km2 recep-
tion area on average, representing the uncertainty
in our ability to determine the user’s where-
abouts), and links represent the observed move-
ments between these. The uneven node sizes,
corresponding to the percentage of time the user
spent in the vicinity of the particular tower,
indicate that individuals tend to spend most of
their time in a few selected locations. Finally,
each mobility network has an associated dynam-
ical pattern (Fig. 1C), capturing the temporal
sequence of towers visited by the user.

Entropy is probably the most fundamental
quantity capturing the degree of predictability
characterizing a time series (24). We assign three
entropy measures to each individual’s mobility
pattern: (i) The random entropy Srandi ≡ log2Ni,
where Ni is the number of distinct locations
visited by user i, capturing the degree of
predictability of the user’s whereabouts if each
location is visited with equal probability; (ii)
the temporal-uncorrelated entropy Sunci ≡
−∑Ni

j¼1pið jÞ log2pið jÞ, where pi( j) is the his-
torical probability that location j was visited
by the user i, characterizing the heterogeneity
of visitation patterns; (iii) the actual entropy,
Si, which depends not only on the frequency
of visitation, but also the order in which the
nodes were visited and the time spent at each

location, thus capturing the full spatiotemporal
order present in a person’s mobility pattern. To be
specific, if Ti ¼ fX1; X2;⋯;XLg denotes the
sequence of towers at which user i was observed
at each consecutive hourly interval, the entropy
Si is given by −∑T 0

i ⊂TiPðT
0
i Þlog2½PðT

0
i Þ%, where

P(Ti′) is the probability of finding a particular
time-ordered subsequence Ti′ in the trajectory
Ti [(22) section S4]. Naturally, for each user,
Si ≤ Sunci ≤ Srandi .

To calculate the real entropy Si, we need a
continuous (e.g., hourly) record of a user’s
momentary location. Mobile phone records
provide location information only when a person
uses his or her phone. The users tend to place
most of their calls in short bursts (11–13, 25)
(Fig. 1D), followed by long periods with no call
activity, during which we have no information
about the user’s location (Fig. 1C). This incom-
pleteness of the collected data is captured by the
parameter q, representing the fraction of hour-
long intervals when the user’s location is
unknown to us. As Fig. 1E shows, P(q) across
our user base peaked around q = 0.7, which
indicated that, for a typical user, we have no
location update for about 70% of the hourly
intervals, which masks the user’s real entropy Si.
We therefore studied the dependence of the
entropy S(q) on the incompleteness q, which
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Fig. 1. (A) Trajectories of two anonymized
mobile phone users who visited the vi-
cinity of N = 22 and 76 different towers

during the 3-month-long observational period. Each dot
corresponds to a mobile phone tower, and each time a user
makes a call, the closest tower that routes the call is recorded,
pinpointing the user’s approximate location. The gray lines
represent the Voronoi lattice, approximating each tower’s area
of reception. The colored lines represent the recorded move-
ment of the user between the towers. (B) Mobility networks
associated with the two users shown in (A). The area of the
nodes corresponds to the frequency of calls the user made in
the vicinity of the respective tower, and the widths of line edges
are proportional to the frequency of the observed direct move-

ment between two towers. (C) A week-long call pattern that captures the time-dependent location of the user with N = 22. Each vertical line
corresponds to a call, and its color matches the tower from where the call was placed. This sequence of locations serves as the basis of our mobility
prediction. (D) The distribution of the time intervals between consecutive calls, t, across the whole user population, documenting the nature of the call
pattern as coming in bursts (11). (E) The distribution of the fraction of unknown locations, q, representing the hourly intervals when the user did not make a
call, and thus his or her location remains unknown to us.

www.sciencemag.org SCIENCE VOL 327 19 FEBRUARY 2010 1019
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Mobile phone data
the interplay between the regular and thus pre-
dictable and the random and thus unforeseeable,
probing through human mobility the fundamen-
tal limits that characterize the predictability of
human dynamics.

At present, the most detailed information on
human mobility across a large segment of the
population is collected by mobile phone carriers
(4, 16–21). Mobile carriers record the closest
mobile tower each time the user uses his or her
phone. Here we use a 3-month-long record,
collected for billing purposes and anonymized
by the data source, capturing the mobility
patterns of 50,000 individuals chosen from ~10
million anonymous mobile phone users with the
criteria that they visit more than two locations
(tower vicinity) during the observational period
and that their average call frequency f is ≥0.5
hour−1 [(22) sections S1 and S2].

The trajectories of two users with widely
different mobility patterns are shown in Fig. 1A:
The first user moves in the vicinity of N = 22
towers in a 30-km region, whereas the second
visits as many as N = 76 towers spanning
approximately a 90-km neighborhood. To under-
stand the recurrent nature of individual mobility,
we assigned to each user a mobility network (23)
(Fig. 1B), in which nodes are the locations visited
by the user (each location corresponding to a

mobile phone tower, with about a 3-km2 recep-
tion area on average, representing the uncertainty
in our ability to determine the user’s where-
abouts), and links represent the observed move-
ments between these. The uneven node sizes,
corresponding to the percentage of time the user
spent in the vicinity of the particular tower,
indicate that individuals tend to spend most of
their time in a few selected locations. Finally,
each mobility network has an associated dynam-
ical pattern (Fig. 1C), capturing the temporal
sequence of towers visited by the user.

Entropy is probably the most fundamental
quantity capturing the degree of predictability
characterizing a time series (24). We assign three
entropy measures to each individual’s mobility
pattern: (i) The random entropy Srandi ≡ log2Ni,
where Ni is the number of distinct locations
visited by user i, capturing the degree of
predictability of the user’s whereabouts if each
location is visited with equal probability; (ii)
the temporal-uncorrelated entropy Sunci ≡
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j¼1pið jÞ log2pið jÞ, where pi( j) is the his-
torical probability that location j was visited
by the user i, characterizing the heterogeneity
of visitation patterns; (iii) the actual entropy,
Si, which depends not only on the frequency
of visitation, but also the order in which the
nodes were visited and the time spent at each

location, thus capturing the full spatiotemporal
order present in a person’s mobility pattern. To be
specific, if Ti ¼ fX1; X2;⋯;XLg denotes the
sequence of towers at which user i was observed
at each consecutive hourly interval, the entropy
Si is given by −∑T 0

i ⊂TiPðT
0
i Þlog2½PðT

0
i Þ%, where

P(Ti′) is the probability of finding a particular
time-ordered subsequence Ti′ in the trajectory
Ti [(22) section S4]. Naturally, for each user,
Si ≤ Sunci ≤ Srandi .

To calculate the real entropy Si, we need a
continuous (e.g., hourly) record of a user’s
momentary location. Mobile phone records
provide location information only when a person
uses his or her phone. The users tend to place
most of their calls in short bursts (11–13, 25)
(Fig. 1D), followed by long periods with no call
activity, during which we have no information
about the user’s location (Fig. 1C). This incom-
pleteness of the collected data is captured by the
parameter q, representing the fraction of hour-
long intervals when the user’s location is
unknown to us. As Fig. 1E shows, P(q) across
our user base peaked around q = 0.7, which
indicated that, for a typical user, we have no
location update for about 70% of the hourly
intervals, which masks the user’s real entropy Si.
We therefore studied the dependence of the
entropy S(q) on the incompleteness q, which
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cinity of N = 22 and 76 different towers

during the 3-month-long observational period. Each dot
corresponds to a mobile phone tower, and each time a user
makes a call, the closest tower that routes the call is recorded,
pinpointing the user’s approximate location. The gray lines
represent the Voronoi lattice, approximating each tower’s area
of reception. The colored lines represent the recorded move-
ment of the user between the towers. (B) Mobility networks
associated with the two users shown in (A). The area of the
nodes corresponds to the frequency of calls the user made in
the vicinity of the respective tower, and the widths of line edges
are proportional to the frequency of the observed direct move-

ment between two towers. (C) A week-long call pattern that captures the time-dependent location of the user with N = 22. Each vertical line
corresponds to a call, and its color matches the tower from where the call was placed. This sequence of locations serves as the basis of our mobility
prediction. (D) The distribution of the time intervals between consecutive calls, t, across the whole user population, documenting the nature of the call
pattern as coming in bursts (11). (E) The distribution of the fraction of unknown locations, q, representing the hourly intervals when the user did not make a
call, and thus his or her location remains unknown to us.
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Human mobility

M. C. González, et al., 2008

with r0
g ~5:8 km, br 5 1.65 6 0.15 and k 5 350 km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t) , t3/(2 1 b)

(ref. 21), whereas, for an RW, rg(t) , t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T) # 3 km),
medium (20 , rg(T) # 30 km) or large (rg(T) . 100 km) at the end
of our observation period (T 5 6 months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T 5 6 months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

!!" #
*r{a

g F Dr
$

rg

" #
, where a < 1.2 6 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x) , x2a for x , 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that the measured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to a mobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T 5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.

LETTERS NATURE | Vol 453 | 5 June 2008

780
Nature   Publishing Group©2008

Bagrow and Lin, 2012



Internet

infovis.info > Atlas of cyberspace



Internet

Nodes

Links

Computers, routers, 
subnetworks, etc.

Connect nodes that share 
data



Web

WWW sits on top of the 
Internet

First web server

Nodes Web pages

Links Hyperlinks



Web

WWW sits on top of the 
Internet

First web server

Nodes Web pages

Links Hyperlinks

Novelty of the web led to 
the explosion of networks 

research in the late 90s
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Nodes

Links

People
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Huge area

Information spreading

Disease spreading

Sociology



Huge area

Information spreading

Disease spreading

Sociology

1932
1934, 1953 (2nd ed)



Huge area

Information spreading

Disease spreading

Sociology

Applications
Marketing
Vaccine distribution
Social media
Emergency response
....



Huge area

Information spreading

Disease spreading

Sociology

Applications
Marketing
Vaccine distribution
Social media
Emergency response
....

See next
NetSci school
session



Biological networks

Another HUGE area



Systems biology

Protein-Protein 
Interaction 

networks



PPI networks

Palla, et al. Nature, 2005



PPI networks

Palla, et al. Nature, 2005



Metabolic networks



Metabolic networks

Metabolites (chemicals)nodes:
links: Reactions involving metabolites



Metabolic networks

http://www.expasy.org/tools/pathways/Kyoto Encyclopedia of Genes and Genomes
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Goh, et al., PNAS 2007



“Diseaseome”

Goh, et al., PNAS 2007

a few other disorders, whereas a few phenotypes such as colon
cancer (linked to k ! 50 other disorders) or breast cancer (k ! 30)
represent hubs that are connected to a large number of distinct
disorders. The prominence of cancer among the most connected
disorders arises in part from the many clinically distinct cancer
subtypes tightly connected with each other through common tumor
repressor genes such as TP53 and PTEN.

Although the HDN layout was generated independently of any
knowledge on disorder classes, the resulting network is naturally
and visibly clustered according to major disorder classes. Yet, there
are visible differences between different classes of disorders.
Whereas the large cancer cluster is tightly interconnected due to the
many genes associated with multiple types of cancer (TP53, KRAS,
ERBB2, NF1, etc.) and includes several diseases with strong pre-
disposition to cancer, such as Fanconi anemia and ataxia telangi-
ectasia, metabolic disorders do not appear to form a single distinct
cluster but are underrepresented in the giant component and
overrepresented in the small connected components (Fig. 2a). To
quantify this difference, we measured the locus heterogeneity of
each disorder class and the fraction of disorders that are connected
to each other in the HDN (see SI Text). We find that cancer and
neurological disorders show high locus heterogeneity and also
represent the most connected disease classes, in contrast with
metabolic, skeletal, and multiple disorders that have low genetic
heterogeneity and are the least connected (SI Fig. 7).

Properties of the DGN. In the DGN, two disease genes are connected
if they are associated with the same disorder, providing a comple-

mentary, gene-centered view of the diseasome. Given that the links
signify related phenotypic association between two genes, they
represent a measure of their phenotypic relatedness, which could be
used in future studies, in conjunction with protein–protein inter-
actions (6, 7, 19), transcription factor-promoter interactions (20),
and metabolic reactions (8), to discover novel genetic interactions.
In the DGN, 1,377 of 1,777 disease genes are connected to other
disease genes, and 903 genes belong to a giant component (Fig. 2b).
Whereas the number of genes involved in multiple diseases de-
creases rapidly (SI Fig. 6d; light gray nodes in Fig. 2b), several
disease genes (e.g., TP53, PAX6) are involved in as many as 10
disorders, representing major hubs in the network.

Functional Clustering of HDN and DGN. To probe how the topology
of the HDN and GDN deviates from random, we randomly
shuffled the associations between disorders and genes, while keep-
ing the number of links per each disorder and disease gene in the
bipartite network unchanged. Interestingly, the average size of the
giant component of 104 randomized disease networks is 643 " 16,
significantly larger than 516 (P # 10$4; for details of statistical
analyses of the results reported hereafter, see SI Text), the actual
size of the HDN (SI Fig. 6c). Similarly, the average size of the giant
component from randomized gene networks is 1,087 " 20 genes,
significantly larger than 903 (P # 10$4), the actual size of the DGN
(SI Fig. 6e). These differences suggest important pathophysiological
clustering of disorders and disease genes. Indeed, in the actual
networks disorders (genes) are more likely linked to disorders
(genes) of the same disorder class. For example, in the HDN there
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Human Disease Network
(HDN)

Disease Gene Network
(DGN)

disease genomedisease phenome

DISEASOME

Fig. 1. Construction of the diseasome bipartite network. (Center) A small subset of OMIM-based disorder–disease gene associations (18), where circles and rectangles
correspond to disorders and disease genes, respectively. A link is placed between a disorder and a disease gene if mutations in that gene lead to the specific disorder.
Thesizeofacircle isproportional tothenumberofgenesparticipating inthecorrespondingdisorder,andthecolorcorrespondstothedisorderclass towhichthedisease
belongs. (Left) The HDN projection of the diseasome bipartite graph, in which two disorders are connected if there is a gene that is implicated in both. The width of
a link is proportional to the number of genes that are implicated in both diseases. For example, three genes are implicated in both breast cancer and prostate cancer,
resulting in a link of weight three between them. (Right) The DGN projection where two genes are connected if they are involved in the same disorder. The width of
a link is proportional to the number of diseases with which the two genes are commonly associated. A full diseasome bipartite map is provided as SI Fig. 13.

8686 ! www.pnas.org"cgi"doi"10.1073"pnas.0701361104 Goh et al.

Network between
diseases and genes
associated with those 

diseases
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a few other disorders, whereas a few phenotypes such as colon
cancer (linked to k ! 50 other disorders) or breast cancer (k ! 30)
represent hubs that are connected to a large number of distinct
disorders. The prominence of cancer among the most connected
disorders arises in part from the many clinically distinct cancer
subtypes tightly connected with each other through common tumor
repressor genes such as TP53 and PTEN.

Although the HDN layout was generated independently of any
knowledge on disorder classes, the resulting network is naturally
and visibly clustered according to major disorder classes. Yet, there
are visible differences between different classes of disorders.
Whereas the large cancer cluster is tightly interconnected due to the
many genes associated with multiple types of cancer (TP53, KRAS,
ERBB2, NF1, etc.) and includes several diseases with strong pre-
disposition to cancer, such as Fanconi anemia and ataxia telangi-
ectasia, metabolic disorders do not appear to form a single distinct
cluster but are underrepresented in the giant component and
overrepresented in the small connected components (Fig. 2a). To
quantify this difference, we measured the locus heterogeneity of
each disorder class and the fraction of disorders that are connected
to each other in the HDN (see SI Text). We find that cancer and
neurological disorders show high locus heterogeneity and also
represent the most connected disease classes, in contrast with
metabolic, skeletal, and multiple disorders that have low genetic
heterogeneity and are the least connected (SI Fig. 7).

Properties of the DGN. In the DGN, two disease genes are connected
if they are associated with the same disorder, providing a comple-

mentary, gene-centered view of the diseasome. Given that the links
signify related phenotypic association between two genes, they
represent a measure of their phenotypic relatedness, which could be
used in future studies, in conjunction with protein–protein inter-
actions (6, 7, 19), transcription factor-promoter interactions (20),
and metabolic reactions (8), to discover novel genetic interactions.
In the DGN, 1,377 of 1,777 disease genes are connected to other
disease genes, and 903 genes belong to a giant component (Fig. 2b).
Whereas the number of genes involved in multiple diseases de-
creases rapidly (SI Fig. 6d; light gray nodes in Fig. 2b), several
disease genes (e.g., TP53, PAX6) are involved in as many as 10
disorders, representing major hubs in the network.

Functional Clustering of HDN and DGN. To probe how the topology
of the HDN and GDN deviates from random, we randomly
shuffled the associations between disorders and genes, while keep-
ing the number of links per each disorder and disease gene in the
bipartite network unchanged. Interestingly, the average size of the
giant component of 104 randomized disease networks is 643 " 16,
significantly larger than 516 (P # 10$4; for details of statistical
analyses of the results reported hereafter, see SI Text), the actual
size of the HDN (SI Fig. 6c). Similarly, the average size of the giant
component from randomized gene networks is 1,087 " 20 genes,
significantly larger than 903 (P # 10$4), the actual size of the DGN
(SI Fig. 6e). These differences suggest important pathophysiological
clustering of disorders and disease genes. Indeed, in the actual
networks disorders (genes) are more likely linked to disorders
(genes) of the same disorder class. For example, in the HDN there
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Fig. 1. Construction of the diseasome bipartite network. (Center) A small subset of OMIM-based disorder–disease gene associations (18), where circles and rectangles
correspond to disorders and disease genes, respectively. A link is placed between a disorder and a disease gene if mutations in that gene lead to the specific disorder.
Thesizeofacircle isproportional tothenumberofgenesparticipating inthecorrespondingdisorder,andthecolorcorrespondstothedisorderclass towhichthedisease
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.

Disorder Class

Disorder Name

Bone
Cancer
Cardiovascular
Connective tissue disorder
Dermatological
Developmental
Ear, Nose, Throat
Endocrine
Gastrointestinal
Hematological
Immunological
Metabolic
Muscular
Neurological
Nutritional
Ophthamological
Psychiatric
Renal
Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia
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syndrome

Waardenburg-Shah
syndrome

Waardenburg
syndrome

Wagner
syndrome

WAGR
syndrome

Walker-Warburg
syndrome

Watson
syndrome

Wegener
granulomatosis

Weill-Marchesani
syndrome

1586

Williams-Beuren
syndrome

Wilms
tumor

Wiskott-Aldrich
syndrome

Witkop
syndrome

Wolff-Parkinson-White
syndrome

1614

Zlotogora-Ogur
syndrome

Adrenal
adenoma

Adrenal_cortical
carcinoma

Aneurysm,
familial_arterial

Autoimmune
thyroid
disease

Basal_cell
nevus_syndrome

Carcinoid_tumor
of_lung

Central_core
disease

Coronary
spasms

2385

2785

Macular
dystrophy

Medullary_thyroid
carcinoma

Pancreatic
agenesis

3212

3229

Thyroid
hormone
resistance

3512

3558

Combined
immunodeficiency

Multiple
malignancy
syndrome

Optic_nerve
hypoplasia/aplasia

5233

Renal
tubular
acidosis

Multiple
sclerosis

Renal
tubular

dysgenesis

ABCA1

ABCA4

ADA

ADRB2

AGRP

JAG1

AGTAGTR1

ALOX5

ALOX5AP

APC

APOA1

APOA2

APOB

APOE

APPFAS

AQP1

AR

STS

ATM

ATP1A2

ATP7A

BAX

CCND1

BCS1L

BDNF

BMPR1A

BRCA1

BRAF

BRCA2

C6

CACNA1A

CACNA1S

CACNB4

CASP8

CASP10

CASR

CAV3

RUNX1

CBS

CD36

CDH1

CDKN2A

CHRNA4

COL1A1

COL1A2

COL2A1

COL3A1

COL7A1

COL8A2

COL9A2

COL9A3

COL11A1

COL11A2

COMP

KLF6

COX15

CP

CPT2

CRX

CRYAB

NKX2-5

CTLA4

CTNNB1

CYP1B1

CYP2A6

DBH

ACE

DCTN1

DCX

DES

TIMM8A

COCH

NQO1

DMD
DSP

DSPP

SLC26A2

ECE1

EDN3

EDNRB

EGFR

EGR2

ELA2

ELN

EP300

EPHX1ERBB2

EYA4

ESR1

EYA1

F5

F7

FBN1

FCGR3A

FCMD

FGA

FGB

FGD1

FGFR1

FGFR3

FGFR2

FGG

FOXC1

FLNB

G6PD

GABRG2

GARS

GATA1

GCK

GCNT2

GCSL

GDNF

GJA1

GJB2
GJB3

GPC3

GNAI2
GNAS

GSS

MSH6

GYPC

GUCY2D

HEXB

CFH

HNF4A

HOXD10

HRAS

HSD11B2

HSPB1

HTR2A

IL2RG

IL10

IL13

INS

INSR

IPF1

IRF1

JAK2

KCNE1

KCNH2

KCNJ11

KCNQ1

KCNQ2

KIT

KRAS

KRT1

KRT10

LAMA3

LMNA

LOR

LPP

LRP5

SMAD4

MAPT

MATN3

MECP2

MEN1

MET

CIITA

MITF

MLH1 NR3C2

MPO

MPZ

MSH2

MSX1

MSX2

MUTYH

MXI1

MYF6
MYH6

MYH7

MYH8

MYH9

MYO7A

NBN

NDP

NDUFV1

NDUFS4

NF1

NF2

NOS3

NRL

NTRK1

OPA1

SLC22A18

PAFAH1B1

PARK2

PAX3

PAX6

PAX9

PDGFB

PDGFRA

PDGFRL

PDE6B

PDHA1

ENPP1

SLC26A4

PGK1

SERPINA1

PIK3CA

PITX2 PITX3

PLEC1

PLOD1

PLP1

PMP22

PMS2

PPARG

PRKAR1A

PRNP

PRODH

PSEN1

PTCH

PTEN

PTPN11

PTPRC

PVRL1

RAG1

RAG2

RASA1

RB1

RDS

REN

RET

RHAG

RHCE

RHO

RLBP1

RP1

RPGR

RPE65

RPS6KA3

RYR1

RYR2

SCN4A

SCN5A

SCNN1B

SCNN1G

SDHA

SDHBSDHD

SGCD

SHH

SLC2A2

SLC4A1

SLC6A4

SLC6A8

SLC34A1

SNCA

SOX3

SOX10

SPTA1

SPTB

STAT5B

ELOVL4

STK11

ABCC8

TAP2

TAZ

TBP

TCF1

TCF2

TG

TGFBR2

TGM1

THBD

TNF

TP53

TPO

TSHR

TTN

TTR

TYR

USH2A

VHL

VMD2

WAS

WT1

XRCC3

PLA2G7

HMGA2

DYSF

AXIN2

MAD1L1

RAD54L

IKBKG

TCAP

PTCH2

WISP3

BCL10

PHOX2B

LGI1

VAPB

MYOT

KCNE2

NR2E3

USH1C

FBLN5

POMT1

GJB6

SPINK5

CHEK2

ACSL6

CRB1

AIPL1

RAD54B

PTPN22

BSCL2

VSX1
FOXP3

PHF11

PRKAG2

NLGN3

CNGB3

RETN

RPGRIP1

NLGN4X

ALS2

CDH23

DCLRE1C

PCDH15

CDC73

OPA3

BRIP1

MASS1

ARX

FLCN

Abacavir
hypersensitivity

18

Acrocallosal
syndrome

Acrocapitofemoral
dysplasia

Acrokeratosis
verruciformis

Acromesomelic
dysplasia

53

Adrenoleukodystrophy

Adrenomyeloneuropathy

ADULT
syndrome

Agammaglobulinemia

AIDS

77

Aldosteronism
Alopecia

universalis

Alpers
syndrome

87

Alpha-actinin-3
deficiency

92

Alport
syndrome

Amelogenesis
imperfecta

Analbuminemia

107

Anderson
disease

Anhaptoglobinemia

Ankylosing
spoldylitis

Antley-Bixler
syndrome

Aplastic
anemia

Aromatase
deficiency

Arthrogryposis

162

Atransferrinemia

Atrichia w/
papular lesions

171

Bardet-Biedl
syndrome

BCG
infection

Beckwith-Wiedemann
syndrome

Bernard-Soulier
syndrome

Bethlem
myopathy

Blau
syndrome

210

Blepharospasm

Blue-cone
monochromacy

Bombay
phenotype

Bosley-Salih-Alorainy
syndrome

Brachydactyly

Buschke-Ollendorff
syndrome

Calcinosis,
tumoral

Campomelic
dysplasia

Cartilage-hair
hypoplasia

279

292

294
Ceroid

lipofuscinosis

Ceroid-lipofuscinosis

CETP
deficiency

Cholelithiasis

Cholestasis

313

Chondrocalcinosis

Chondrosarcoma

Chorea,
hereditary

benign

320

Chudley-Lowry
syndrome

329

Chylomicron
retention
disease

Ciliary
dyskinesia

CINCA
syndrome

Cleidocranial
dysplasia

Cockayne
syndrome

Codeine
sensitivity

344

Colorblindness

Congestive
heart
failure

Conjunctivitis,
ligneous

357

Coproporphyria

Craniometaphyseal
dysplasia

CRASH
syndrome

Crigler-Najjar
syndrome

Crohn
disease

Cystathioninuria

Cystic
fibrosis

Cystinuria
Darier
disease

Debrisoquine
sensitivity

Dental
anomalies,

isolated

Dent
disease

De Sanctis-Cacchione
syndrome

DiGeorge
syndrome

438

Dosage-sensitive
sex

reversal

Double-outlet
right ventricle

Down
syndrome

452

453

Dyskeratosis

Dysprothrombinemia

461

Dystonia

EEC syndrome

471

Ellis-
van Creveld
syndrome

Enchondromatosis

Erythremias

Erythrocytosis

Ewing
sarcoma

Exostoses

527

Fertile
eunuch

syndrome

535

Fibromatosisl

539

Fish-eye
disease

Fitzgerald factor
deficiency

544

545

Frontometaphyseal
dysplasia

Fumarase
deficiency

Gaucher
disease

584

Gilbert
syndrome

GM-gangliosidosis

Greenberg
dysplasia

626

Guttmacher
syndrome

Haim-Munk
syndrome

Hand-foot-uterus
syndrome

Harderoporphyrinuria

HARP
syndrome

Hay-Wells
syndrome

646

Heinz
body

anemia

HELLP
syndrome

Hemangioma

Hematuria,
familial_benign

Hemochromatosis

Hemoglobi_H
disease

Hemophilia

Heterotaxy

Heterotopia

Hex_A
pseudodeficiency

679

Homocysteine
plasma

level

699 701

Hoyeraal-Hreidarsson
syndrome

HPFH

HPRT-related
gout

H._pylori
infection

Hyalinosis,
infantile
systemic

Hydrocephalus

Hyperalphalipoproteinemia

Hyperandrogenism

Hyperbilirubinemia

Hyperekplexia

727

Hyper-IgD
syndrome

734

Hypermethioninemia

Hyperphenylalaninemia

Hyperprothrombinemia

Hypertrypsinemia

Hyperuricemic
nephropathy

Hypoaldosteronism

Hypochromic
microcytic

anemia

Hypogonadotropic
hypogonadism

Hypohaptoglobinemia

Hypolactasia,
adult
type

780

Hypophosphatasia

Hypophosphatemia

Hypophosphatemic
rickets

785

Hypoprothrombinemia

Inclusion
body

myopathy

Iron
overload/deficiency

Joubert
syndrome

Juberg-Marsidi
syndrome

Kanzaki
disease

Kartagener
syndrome

Kenny-Caffey
syndrome-1

Kininogen
deficiency

Langer
mesomelic
dysplasia

Laron
dwarfism

LCHAD
deficiency

Lead
poisoning

Leiomyomatosis

Leri-Weill
dyschondrosteosis

Lesch-Nyhan
syndrome,

891

Leydig
cell

adenoma

LIG4
syndrome

Limb-mammary
syndrome

Lipoprotein
lipase

deficiency

Longevity

Lowe
syndrome

Low renin
hypertension

Lymphangioleiomyomatosis

Lymphedema

945

MASA
syndrome

McKusick-Kaufman
syndrome

969

Melnick-Needles
syndrome

982

Meningococcal
disease

Mephenytoin
poor metabolizer

Metachromatic
leukodystrophy

Metaphyseal
chondrodysplasia

Methemoglobinemia

1001
1002

Mevalonicaciduria

Microcephaly

Micropenis

Microphthalmia

Muckle-Wells
syndrome

Mucopolysaccharidosis

Mycobacterial
infection

Myelokathexis,
isolated

1050

Myeloproliferative
disorder

Nemaline
myopathy

1080

Nephrolithiasis

Nephronophthisis

1090

Neurodegeneration

Nonaka
myopathy

Norum
disease

1119

Ocular
albinism

1133

Odontohypophosphatasia

Opremazole
poor metabolizer

Orofacial cleft

Osteolysis

Osteopoikilosis

Otopalatodigital
syndrome

Ovarioleukodystrophy

Pachyonychia
congenita

Paget
disease

Pallister-Hall
syndrome

Palmoplantar
keratoderma

Pancreatitis

Papillon-Lefevre
syndrome

Pelger-Huet
anomaly

Periodontitis

Phenylketonuria

1227 Plasminogen
deficiency

1238

Polydactyly

Popliteal
pterygium
syndrome

Porphyria

Precocious
puberty,

male

Premature
ovarian
failure

1265

Proguanil
poor metabolizer

Proteinuria

Pseudohermaphroditism,
male

Psoraisis

Pulmonary
fibrosis

RAPADILINO
syndrome

Rapp-Hodgkin
syndrome

Red hair/
fair skin

Refsum
disease

Resting
heart
rate

Restrictive
dermopathy,

lethal

1325

1335

Rothmund-Thomson
syndrome

Salla
disease

Sarcoidosis

Schindler
disease

1361

Senior-Loken
syndrome

1376

Septooptic
dysplasia

Sex
reversal

Short
stature

Sialidosis

Sialuria

Sickle
cell

anemia

Situs
ambiguus

Smith-Fineman-Myers
syndrome

Smith-McCort
dysplasia

Sotos
syndrome

Spina
bifida

Split-hand/foot
malformation

Spondylometaphyseal
dysplasia

1438

Startle
disease

STAT1
deficiency

Steatocystoma
multiplex

1446

Surfactant
deficiency

Sutherland-Haan
syndrome-like

1466

Symphalangism,
proximal

Synostoses
syndrome

Synpolydactyly

Tall
stature

1475

Tay-Sachs
disease

Thalassemias

Thymine-uraciluria

Tolbutamide
poor

metabolizer

1519

Trichodontoosseous
syndrome

Trichothiodystrophy

1526

Tropical
calcific

pancreatitis

Tuberculosis

Tuberous
sclerosis

Twinning,
dizygotic

1542

UV-induced
skin damage

Velocardiofacial
syndrome

Virilization

1565

1580

Weaver
syndrome

Weyers
acrodental
dysostosis

WHIM
syndrome

Wolfram
syndrome

Wolman
disease

Xeroderma
pigmentosum

1611

Yellow
nail

syndrome

Zellweger
syndrome

Adrenocortical
insufficiency

Chondrodysplasia,
Grebe
type

2327

Combined
hyperlipemia

2354

Diabetes
insipidus

3037

3144

Ovarian
dysgenesis

3260
van_der_Woude

syndrome
Basal

ganglia
disease

4291
5170

Pituitary
hormone
deficiency

Renal
hypoplasia,

isolated

Ovarian
sex cord
tumors

Combined
SAP deficiency

Multiple
myeloma

SERPINA3

ACTN3

ADRB1

NR0B1

ALAD

ALB

ABCD1

ALPL

ATP2A2

ATRX

AVPR2

FOXL2

BTK

RUNX2KRIT1

CETP

CTSC

CFTR

CLCN5
COL4A4

COL6A1

COL6A2

COL6A3

COL10A1

CPOX

CTH

CYP2C19

CYP2C9

CYP2D6

CYP11B1

CYP11B2

CYP19A1

CYP21A2

DKC1

DLX3

DNAH5

DPYD

DRD5

ERCC2

ERCC3

ERCC5

ERCC6

EVC

EWSR1

EXT1

F2

F9

FH

FOXC2

FLNA

FLT4

FSHR

FTL

NR5A1

FUT2OPN1MW

GHR

GLB1

GLI3

GLRA1

GNRHR

GP1BB

HADHA

HBA1

HBA2

HBB

HEXA

HFE

HLA-B

HOXA1

HOXA13
HOXD13

HP

HPRT1

HSPG2

IFNG

IFNGR1

IHH
IRF6

KNG1

KRT16

KRT17

L1CAM

LBR

LCAT

LHCGR

LIG4

LIPA

LPL

MAT1A

MBL2

MC1R

MCM6

MTHFD1

MTR MTRR MVK

NAGA

NPHP1

ROR2

OCRL

PAH

PAX2

PDGFRB

PEX1

PEX7

PEX10

PEX13

ABCB4

PLG

POLG

POR

PPT1

PSAP
PTHR1

PXMP3

PEX5

OPN1LW

RMRP

SFTPC

SHOX

SLC3A1

SOX9

SPINK1

STAT1

TBX1

TBCE

TERC

TF

TITF1

TPM2

TSC1TSC2

UMOD

WFS1

CXCR4

FGF23

MKKS

GDF5

TP73L

DNAH11

TNFRSF11A

HESX1

EIF2B4

EIF2B2
EIF2B5

NOG

RECQL4

GNE
ENAM

ZMPSTE24

LEMD3

SLC17A5

DNAI1

SAR1B

SLC45A2

UGT1A1

DYM

BCOR

PEX26

HR

CFC1

ANKH

CARD15

NSD1

VKORC1

MCPH1

PANK2

CIAS1

ANTXR2

NPHP4

The human disease network
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.

Disorder Class

Disorder Name

Bone
Cancer
Cardiovascular
Connective tissue disorder
Dermatological
Developmental
Ear, Nose, Throat
Endocrine
Gastrointestinal
Hematological
Immunological
Metabolic
Muscular
Neurological
Nutritional
Ophthamological
Psychiatric
Renal
Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia



3-methylglutaconicaciduria

Aarskog-Scott
syndrome

ABCD
syndrome

Abetalipoproteinemia

26

Achondrogenesis_Ib

Achondroplasia

Achromatopsia

Acquired
long_QT_syndrome

Acromegaly

Adenocarcinoma

Adenoma,
periampullary

Adenomas

Adenosine_deaminase
deficiency

Adrenocortical
carcinoma

Adult_i
phenotype

Afibrinogenemia

Alagille
syndrome

Albinism

Alcohol
dependence

Alexander
disease

Allergic
rhinitis

96

Alzheimer
disease

Amyloid
neuropathy

Amyloidosis

Amyotrophic
lateral

sclerosis

Androgen
insensitivity

Anemia

Angelman
syndrome

Angiofibroma,
sporadic

117

Aniridia,
type_II

Anorexia
nervosa

126

129

Aortic
aneurysm

Apert
syndrome

Apolipoprotein
deficiency

137

Aquaporin-1
deficiency

144

Arthropathy

Asperger
syndrome

Asthma

Ataxia

Ataxia-telangiectasia

Atelosteogenesis

Atherosclerosis

Atopy

Atrial
fibrillation

Atrioventricular
block

Autism

Autoimmune
disease

Axenfeld
anomaly

182

Bare_lymphocyte
syndrome

Barth
syndrome

Bart-Pumphrey
syndrome

Basal_cell
carcinoma

192

Becker
muscular
dystrophy

Benzene
toxicity

198

Birt-Hogg-Dube
syndrome

Bladder
cancer

Blood
group

217

Bothnia
retinal

dystrophy

Branchiootic
syndrome

Breast
cancer

Brugada
syndrome

Butterfly
dystrophy,

retinal

Complement_component
deficiency

Cafe-au-lait
spots

Caffey
disease

Cancer
susceptibility

Capillary
malformations

Carcinoid
tumors,

intestinal

Cardiomyopathy

Carney
complex

275

Cataract

287

Cerebellar
ataxia

Cerebral
amyloid

angiopathy

Cervical
carcinoma

Charcot-Marie-Tooth
disease

Cleft
palate

Coats
disease

Coffin-Lowry
syndrome

Coloboma,
ocular

Colon
cancer

347

Cone
dystrophy

Convulsions

Corneal
dystrophy

Coronary
artery

disease

Costello
syndrome

Coumarin
resistance

Cowden
disease

CPT
deficiency,

hepatic

Cramps,
potassium-aggravated

377

378

379

Craniosynostosis

Creatine
phosphokinase

Creutzfeldt-Jakob
disease

Crouzon
syndrome

Cutis
laxa

396

Deafness

Dejerine-Sottas
disease

Dementia

Dentin
dysplasia,

type_II
418

Denys-Drash
syndrome

422

Desmoid
disease

Diabetes
mellitus

Diastrophic
dysplasia

434

439

441

Duchenne
muscular
dystrophy

Dyserythropoietic
anemia

Dysfibrinogenemia
463

EBD

Ectodermal
dysplasia

Ectopia

Ehlers-Danlos
syndrome

Elliptocytosis

474

Emphysema

Endometrial
carcinoma

Enhanced
S-cone

syndrome

Enlarged
vestibular
aqueduct

Epidermolysis
bullosa

Epidermolytic
hyperkeratosis

Epilepsy

Epiphyseal
dysplasia

Episodic
ataxia

Epstein
syndrome

Erythrokeratoderma

Esophageal
cancer

Estrogen
resistance

Exudative
vitreoretinopathy

Eye
anomalies

Factor_x
deficiency

Fanconi
anemia

Fanconi-Bickel
syndrome

Favism

Fechtner
syndrome

Foveal
hypoplasia

549

Frasier
syndrome

558

Fundus
albipunctatus

G6PD
deficiency

Gardner
syndrome

Gastric
cancer

Gastrointestinal
stromal
tumor

Germ_cell
tumor

Gerstmann-Straussler
disease

Giant-cell
fibroblastoma

Glaucoma

Glioblastoma

594

604

Goiter

GRACILE
syndrome

Graft-versus-host
disease

Graves
disease

Growth
hormone

HDL_cholesterol
level_QTL

Heart
block

Hemangioblastoma,
cerebellar

Hematopoiesis,
cyclic

Hemiplegic_migraine,
familial

Hemolytic
anemia

Hemolytic-uremic
syndrome

Hemorrhagic
diathesis

665

Hepatic
adenoma

Hirschsprung
disease

Histiocytoma

HIV

Holoprosencephaly

Homocystinuria

Huntington
disease

Hypercholanemia

Hypercholesterolemia

Hypereosinophilic
syndrome

Hyperinsulinism

733

Hyperlipoproteinemia

Hyperostosis,
endosteal

Hyperparathyroidism

Hyperproinsulinemia

Hyperprolinemia

Hyperproreninemia

Hypertension

Hyperthroidism

Hyperthyroidism

Hypertriglyceridemia

Hypoalphalipoproteinemia

Hypobetalipoproteinemia

Hypocalcemia

Hypocalciuric
hypercalcemia

Hypoceruloplasminemia

Hypochondroplasia

Hypodontia

Hypofibrinogenemia

Hypoglycemia

Hypokalemic
periodic
paralysis

Hypothyroidism

792

Ichthyosiform
erythroderma Ichthyosis

IgE_levels
QTL

803

Incontinentia
pigmenti

Infantile_spasm
syndrome

809

Insensitivity
to_pain

Insomnia

Insulin
resistance

Intervertebral_disc
disease

Iridogoniodysgenesis

Iris_hypoplasia
and_glaucoma

Jackson-Weiss
syndrome

Jensen
syndrome

830

833

Kallmann
syndrome

Keratitis

843

Keratoconus

845

847

Kniest
dysplasia

Larson
syndrome

868

Leanness,
inherited

Leber
congenital_amaurosis

Leigh
syndrome

Leopard
syndrome

Leprechaunism

Leprosy

Leukemia

Lhermitte-Duclos
syndrome

Liddle
syndrome

Li
Fraumeni
syndrome

Li-Fraumeni
syndrome

Lipodystrophy

Lipoma

Lissencephaly

Listeria
monocytogenes

Loeys-Dietz
syndrome

Long_QT
syndrome

913

Lung
cancer

Lymphoma

930

Macrocytic
anemia

Macrothrombocytopenia

Macular
degeneration

Maculopathy,
bull’s-eye

Malaria

942

Maple_syrup_urine
disease

Marfan
syndrome

Marshall
syndrome

MASS
syndrome

Mast_cell
leukemia

959

May-Hegglin
anomaly

McCune-Albright
syndrome

Medulloblastoma

Melanoma Memory
impairment

Meniere
disease

Meningioma

Menkes
disease

Mental
retardation

Merkel_cell
carcinoma

Mesangial
sclerosis

Mesothelioma

Migraine

1016

Miyoshi
myopathy

MODY

Mohr-Tranebjaerg
syndrome

Morning
glory
disc

anomaly

Muenke
syndrome

Muir-Torre
syndrome

Multiple
endocrine
neoplasia

Muscular
dystrophy

Myasthenic
syndrome

Myelodysplastic
syndrome

Myelofibrosis,
idiopathic

Myelogenous
leukemia

Myeloperoxidase
deficiency

Myocardial
infarction

Myoclonic
epilepsy

1056

1057

Myopathy

Myotilinopathy

Myotonia
congenita

Myxoma,
intracardiac

Nasopharyngeal
carcinoma

Nephropathy-hypertension

Netherton
syndrome

Neuroblastoma

Neuroectodermal
tumors

Neurofibromatosis

1096

Neurofibromatosis

Neurofibrosarcoma

Neuropathy

Neutropenia

Nevo
syndrome

1104
1105

Nicotine
addiction

Night
blindness

Nijmegen_breakage
syndrome

1113

Non-Hodgkin
lymphoma

Nonsmall_cell
lung_cancer

Noonan
syndrome

Norrie
disease

Obesity

Obsessive-compulsive
disorder

Occipital_horn
syndrome

Oculodentodigital
dysplasia

Oligodendroglioma

Oligodontia

1140

Omenn
syndrome

Optic
atrophy

Orolaryngeal
cancer

OSMED
syndrome

Osseous
heteroplasia

1153

Osteoarthritis

Osteogenesis
imperfecta

Osteopetrosis

Osteoporosis 1164

Osteosarcoma

Ovarian
cancer

1174

Pancreatic
cancer

1183

Paragangliomas

Paramyotonia
congenita

Parathyroid
adenoma

Parietal
foramina

Parkes_Weber
syndrome

Parkinson
disease

Partington
syndrome

PCWH

Pelizaeus-Merzbacher
disease

Pendred
syndrome

Perineal
hypospadias

Peters
anomaly

Peutz-Jeghers
syndrome

Pfeiffer
syndrome

Pheochromocytoma

Pick
disease

Piebaldism

1229

Pilomatricoma

1232

Placental
abruption

Platelet
defect/deficiency

1239

Polycythemia

Polyposis

PPM-X
syndrome

Preeclampsia

Primary
lateral_sclerosis

1263

1267

Prostate
cancer

Proud
syndrome

Pseudoachondroplasia

Pseudohypoaldosteronism

Pseudohypoparathyroidism

Pyropoikilocytosis

1297

Rabson-Mendenhall
syndrome

Renal_cell
carcinoma

Retinal_cone
dsytrophy

Retinitis
pigmentosa

Retinoblastoma

Rett
syndrome

Rhabdomyosarcoma

Rheumatoid
arthritis

Rh-mod
syndrome

Rh-negative
blood_type

Rieger
syndrome

Ring_dermoid
of_cornea

Rippling_muscle
disease

Roussy-Levy
syndrome

Rubenstein-Taybi
syndrome

Saethre-Chotzen
syndrome

Salivary
adenoma

1347

SARS,
progression_of

Schizophrenia

Schwannomatosis

Sea-blue_histiocyte
disease

Seasonal
affective_disorder

Sebastian
syndrome

Self-healing
collodion_baby

Sepsis

1383

Sezary
syndrome

Shah-Waardenburg
syndrome

Shprintzen-Goldberg
syndrome

Sick_sinus
syndrome

1396

Simpson-Golabi-Behmel
syndrome

1401

SMED
Strudwick_type

1414

Somatotrophinoma

Spastic_ataxia
/paraplegia

Spherocytosis

Spinal_muscular
atrophy

Spinocereballar
ataxia

1432

Spondyloepiphyseal
dysplasia

Squamous_cell
carcinoma

Stargardt
disease

Stickler
syndrome

Stomach
cancer

Stroke

1456

Supranuclear
palsy

Supravalvar_aortic
stenosis

Syndactyly

Systemic_lupus
erythematosus

Tangier
disease

1476

T-cell
lymphoblastic

leukemia

Tetralogy
of_Fallot

1490

Thrombocythemia

Thrombocytopenia

Thrombophilia

Thyroid
carcinoma

Thyrotoxic
periodic
paralysis

Tietz
syndrome

Toenail
dystrophy,

isolated

1518

1528

Turcot
syndrome

1545

Urolithiasise

Usher
syndrome

Uterine
leiomyoma

van_Buchem
disease

1555

Ventricular
tachycardia

Vertical
talus

Viral
infection

Vitelliform
macular

dystrophy

Vohwinkel
syndrome

von_Hippel-Lindau
syndrome

Waardenburg-Shah
syndrome

Waardenburg
syndrome

Wagner
syndrome

WAGR
syndrome

Walker-Warburg
syndrome

Watson
syndrome

Wegener
granulomatosis

Weill-Marchesani
syndrome

1586

Williams-Beuren
syndrome

Wilms
tumor

Wiskott-Aldrich
syndrome

Witkop
syndrome

Wolff-Parkinson-White
syndrome

1614

Zlotogora-Ogur
syndrome

Adrenal
adenoma

Adrenal_cortical
carcinoma

Aneurysm,
familial_arterial

Autoimmune
thyroid
disease

Basal_cell
nevus_syndrome

Carcinoid_tumor
of_lung

Central_core
disease

Coronary
spasms

2385

2785

Macular
dystrophy

Medullary_thyroid
carcinoma

Pancreatic
agenesis

3212

3229

Thyroid
hormone
resistance

3512

3558

Combined
immunodeficiency

Multiple
malignancy
syndrome

Optic_nerve
hypoplasia/aplasia

5233

Renal
tubular
acidosis

Multiple
sclerosis

Renal
tubular

dysgenesis

ABCA1

ABCA4

ADA

ADRB2

AGRP

JAG1

AGTAGTR1

ALOX5

ALOX5AP

APC

APOA1

APOA2

APOB

APOE

APPFAS

AQP1

AR

STS

ATM

ATP1A2

ATP7A

BAX

CCND1

BCS1L

BDNF

BMPR1A

BRCA1

BRAF

BRCA2

C6

CACNA1A

CACNA1S

CACNB4

CASP8

CASP10

CASR

CAV3

RUNX1

CBS

CD36

CDH1

CDKN2A

CHRNA4

COL1A1

COL1A2

COL2A1

COL3A1

COL7A1

COL8A2

COL9A2

COL9A3

COL11A1

COL11A2

COMP

KLF6

COX15

CP

CPT2

CRX

CRYAB

NKX2-5

CTLA4

CTNNB1

CYP1B1

CYP2A6

DBH

ACE

DCTN1

DCX

DES

TIMM8A

COCH

NQO1

DMD
DSP

DSPP

SLC26A2

ECE1

EDN3

EDNRB

EGFR

EGR2

ELA2

ELN

EP300

EPHX1ERBB2

EYA4

ESR1

EYA1

F5

F7

FBN1

FCGR3A

FCMD

FGA

FGB

FGD1

FGFR1

FGFR3

FGFR2

FGG

FOXC1

FLNB

G6PD

GABRG2

GARS

GATA1

GCK

GCNT2

GCSL

GDNF

GJA1

GJB2
GJB3

GPC3

GNAI2
GNAS

GSS

MSH6

GYPC

GUCY2D

HEXB

CFH

HNF4A

HOXD10

HRAS

HSD11B2

HSPB1

HTR2A

IL2RG

IL10

IL13

INS

INSR

IPF1

IRF1

JAK2

KCNE1

KCNH2

KCNJ11

KCNQ1

KCNQ2

KIT

KRAS

KRT1

KRT10

LAMA3

LMNA

LOR

LPP

LRP5

SMAD4

MAPT

MATN3

MECP2

MEN1

MET

CIITA

MITF

MLH1 NR3C2

MPO

MPZ

MSH2

MSX1

MSX2

MUTYH

MXI1

MYF6
MYH6

MYH7

MYH8

MYH9

MYO7A

NBN

NDP

NDUFV1

NDUFS4

NF1

NF2

NOS3

NRL

NTRK1

OPA1

SLC22A18

PAFAH1B1

PARK2

PAX3

PAX6

PAX9

PDGFB

PDGFRA

PDGFRL

PDE6B

PDHA1

ENPP1

SLC26A4

PGK1

SERPINA1

PIK3CA

PITX2 PITX3

PLEC1

PLOD1

PLP1

PMP22

PMS2

PPARG

PRKAR1A

PRNP

PRODH

PSEN1

PTCH

PTEN

PTPN11

PTPRC

PVRL1

RAG1

RAG2

RASA1

RB1

RDS

REN

RET

RHAG

RHCE

RHO

RLBP1

RP1

RPGR

RPE65

RPS6KA3

RYR1

RYR2

SCN4A

SCN5A

SCNN1B

SCNN1G

SDHA

SDHBSDHD

SGCD

SHH

SLC2A2

SLC4A1

SLC6A4

SLC6A8

SLC34A1

SNCA

SOX3

SOX10

SPTA1

SPTB

STAT5B

ELOVL4

STK11

ABCC8

TAP2

TAZ

TBP

TCF1

TCF2

TG

TGFBR2

TGM1

THBD

TNF

TP53

TPO

TSHR

TTN

TTR

TYR

USH2A

VHL

VMD2

WAS

WT1

XRCC3

PLA2G7

HMGA2

DYSF

AXIN2

MAD1L1

RAD54L

IKBKG

TCAP

PTCH2

WISP3

BCL10

PHOX2B

LGI1

VAPB

MYOT

KCNE2

NR2E3

USH1C

FBLN5

POMT1

GJB6

SPINK5

CHEK2

ACSL6

CRB1

AIPL1

RAD54B

PTPN22

BSCL2

VSX1
FOXP3

PHF11

PRKAG2

NLGN3

CNGB3

RETN

RPGRIP1

NLGN4X

ALS2

CDH23

DCLRE1C

PCDH15

CDC73

OPA3

BRIP1

MASS1

ARX

FLCN

Abacavir
hypersensitivity

18

Acrocallosal
syndrome

Acrocapitofemoral
dysplasia

Acrokeratosis
verruciformis

Acromesomelic
dysplasia

53

Adrenoleukodystrophy

Adrenomyeloneuropathy

ADULT
syndrome

Agammaglobulinemia

AIDS

77

Aldosteronism
Alopecia

universalis

Alpers
syndrome

87

Alpha-actinin-3
deficiency

92

Alport
syndrome

Amelogenesis
imperfecta

Analbuminemia

107

Anderson
disease

Anhaptoglobinemia

Ankylosing
spoldylitis

Antley-Bixler
syndrome

Aplastic
anemia

Aromatase
deficiency

Arthrogryposis

162

Atransferrinemia

Atrichia w/
papular lesions

171

Bardet-Biedl
syndrome

BCG
infection

Beckwith-Wiedemann
syndrome

Bernard-Soulier
syndrome

Bethlem
myopathy

Blau
syndrome

210

Blepharospasm

Blue-cone
monochromacy

Bombay
phenotype

Bosley-Salih-Alorainy
syndrome

Brachydactyly

Buschke-Ollendorff
syndrome

Calcinosis,
tumoral

Campomelic
dysplasia

Cartilage-hair
hypoplasia

279

292

294
Ceroid

lipofuscinosis

Ceroid-lipofuscinosis

CETP
deficiency

Cholelithiasis

Cholestasis

313

Chondrocalcinosis

Chondrosarcoma

Chorea,
hereditary

benign

320

Chudley-Lowry
syndrome

329

Chylomicron
retention
disease

Ciliary
dyskinesia

CINCA
syndrome

Cleidocranial
dysplasia

Cockayne
syndrome

Codeine
sensitivity

344

Colorblindness

Congestive
heart
failure

Conjunctivitis,
ligneous

357

Coproporphyria

Craniometaphyseal
dysplasia

CRASH
syndrome

Crigler-Najjar
syndrome

Crohn
disease

Cystathioninuria

Cystic
fibrosis

Cystinuria
Darier
disease

Debrisoquine
sensitivity

Dental
anomalies,

isolated

Dent
disease

De Sanctis-Cacchione
syndrome

DiGeorge
syndrome

438

Dosage-sensitive
sex

reversal

Double-outlet
right ventricle

Down
syndrome

452

453

Dyskeratosis

Dysprothrombinemia

461

Dystonia

EEC syndrome

471

Ellis-
van Creveld
syndrome

Enchondromatosis

Erythremias

Erythrocytosis

Ewing
sarcoma

Exostoses

527

Fertile
eunuch

syndrome

535

Fibromatosisl

539

Fish-eye
disease

Fitzgerald factor
deficiency

544

545

Frontometaphyseal
dysplasia

Fumarase
deficiency

Gaucher
disease

584

Gilbert
syndrome

GM-gangliosidosis

Greenberg
dysplasia

626

Guttmacher
syndrome

Haim-Munk
syndrome

Hand-foot-uterus
syndrome

Harderoporphyrinuria

HARP
syndrome

Hay-Wells
syndrome

646

Heinz
body

anemia

HELLP
syndrome

Hemangioma

Hematuria,
familial_benign

Hemochromatosis

Hemoglobi_H
disease

Hemophilia

Heterotaxy

Heterotopia

Hex_A
pseudodeficiency

679

Homocysteine
plasma

level

699 701

Hoyeraal-Hreidarsson
syndrome

HPFH

HPRT-related
gout

H._pylori
infection

Hyalinosis,
infantile
systemic

Hydrocephalus

Hyperalphalipoproteinemia

Hyperandrogenism

Hyperbilirubinemia

Hyperekplexia

727

Hyper-IgD
syndrome

734

Hypermethioninemia

Hyperphenylalaninemia

Hyperprothrombinemia

Hypertrypsinemia

Hyperuricemic
nephropathy

Hypoaldosteronism

Hypochromic
microcytic

anemia

Hypogonadotropic
hypogonadism

Hypohaptoglobinemia

Hypolactasia,
adult
type

780

Hypophosphatasia

Hypophosphatemia

Hypophosphatemic
rickets

785

Hypoprothrombinemia

Inclusion
body

myopathy

Iron
overload/deficiency

Joubert
syndrome

Juberg-Marsidi
syndrome

Kanzaki
disease

Kartagener
syndrome

Kenny-Caffey
syndrome-1

Kininogen
deficiency

Langer
mesomelic
dysplasia

Laron
dwarfism

LCHAD
deficiency

Lead
poisoning

Leiomyomatosis

Leri-Weill
dyschondrosteosis

Lesch-Nyhan
syndrome,

891

Leydig
cell

adenoma

LIG4
syndrome

Limb-mammary
syndrome

Lipoprotein
lipase

deficiency

Longevity

Lowe
syndrome

Low renin
hypertension

Lymphangioleiomyomatosis

Lymphedema

945

MASA
syndrome

McKusick-Kaufman
syndrome

969

Melnick-Needles
syndrome

982

Meningococcal
disease

Mephenytoin
poor metabolizer

Metachromatic
leukodystrophy

Metaphyseal
chondrodysplasia

Methemoglobinemia

1001
1002

Mevalonicaciduria

Microcephaly

Micropenis

Microphthalmia

Muckle-Wells
syndrome

Mucopolysaccharidosis

Mycobacterial
infection

Myelokathexis,
isolated

1050

Myeloproliferative
disorder

Nemaline
myopathy

1080

Nephrolithiasis

Nephronophthisis

1090

Neurodegeneration

Nonaka
myopathy

Norum
disease

1119

Ocular
albinism

1133

Odontohypophosphatasia

Opremazole
poor metabolizer

Orofacial cleft

Osteolysis

Osteopoikilosis

Otopalatodigital
syndrome

Ovarioleukodystrophy

Pachyonychia
congenita

Paget
disease

Pallister-Hall
syndrome

Palmoplantar
keratoderma

Pancreatitis

Papillon-Lefevre
syndrome

Pelger-Huet
anomaly

Periodontitis

Phenylketonuria

1227 Plasminogen
deficiency

1238

Polydactyly

Popliteal
pterygium
syndrome

Porphyria

Precocious
puberty,

male

Premature
ovarian
failure

1265

Proguanil
poor metabolizer

Proteinuria

Pseudohermaphroditism,
male

Psoraisis

Pulmonary
fibrosis

RAPADILINO
syndrome

Rapp-Hodgkin
syndrome

Red hair/
fair skin

Refsum
disease

Resting
heart
rate

Restrictive
dermopathy,

lethal

1325

1335

Rothmund-Thomson
syndrome

Salla
disease

Sarcoidosis

Schindler
disease

1361

Senior-Loken
syndrome

1376

Septooptic
dysplasia

Sex
reversal

Short
stature

Sialidosis

Sialuria

Sickle
cell

anemia

Situs
ambiguus

Smith-Fineman-Myers
syndrome

Smith-McCort
dysplasia

Sotos
syndrome

Spina
bifida

Split-hand/foot
malformation

Spondylometaphyseal
dysplasia

1438

Startle
disease

STAT1
deficiency

Steatocystoma
multiplex

1446

Surfactant
deficiency

Sutherland-Haan
syndrome-like

1466

Symphalangism,
proximal

Synostoses
syndrome

Synpolydactyly

Tall
stature

1475

Tay-Sachs
disease

Thalassemias

Thymine-uraciluria

Tolbutamide
poor

metabolizer

1519

Trichodontoosseous
syndrome

Trichothiodystrophy

1526

Tropical
calcific

pancreatitis

Tuberculosis

Tuberous
sclerosis

Twinning,
dizygotic

1542

UV-induced
skin damage

Velocardiofacial
syndrome

Virilization

1565

1580

Weaver
syndrome

Weyers
acrodental
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.
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Cardiovascular
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Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.

Disorder Class

Disorder Name

Bone
Cancer
Cardiovascular
Connective tissue disorder
Dermatological
Developmental
Ear, Nose, Throat
Endocrine
Gastrointestinal
Hematological
Immunological
Metabolic
Muscular
Neurological
Nutritional
Ophthamological
Psychiatric
Renal
Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia
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Generalizations

Aij 6= Aji

A does not have to be symmetric

directed network

Elements of A don’t have to be 1’s and 0’s

weighted network wij(     )
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level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at !0.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.

For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6–8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
states (ALO). It is likely that the spin polariza-
tion should also depend on the position of the
Fermi level with respect to the electronic levels
of each character above and below the gap of
the insulator. In addition, as an evanescent
wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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Emergence of Scaling in
Random Networks

Albert-László Barabási* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (1). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-
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Fig. 3. Bias dependence of the TMR ratio in (A)
Co/STO/LSMO and (B) Co/ALO/STO/LSMO
tunnel junctions.
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wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M
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Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M
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Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge
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Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11–14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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23. L. Núñez et al., Estud. Atacamenos 17, 125 (1999).
24. D. H. Sandweiss, K. A. Maasch, D. G. Anderson, Sci-
ence 283, 499 (1999).

25. Grants from the National Geographic Society (5836-
96), the Swiss National Science Foundation
(21-57073), and Fondo Nacional de Desarrollo Cien-

tı́fico y Tecnológico (1930022) and comments by J. P.
Bradbury, B. Meggers, G. Seltzer, and D. Stanford are
acknowledged.

Supporting Online Material
www.sciencemag.org/cgi/content/full/298/5594/821/
DC1
Figs. S1 to S3
Tables S1 and S2

22 July 2002; accepted 9 September 2002

Network Motifs: Simple Building
Blocks of Complex Networks
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Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the “small
world” property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of
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ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
mail: urialon@weizmann.ac.il

Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11–14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
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in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
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Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the “small
world” property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of
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Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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How do links form in the network?

Do similar nodes connect to 
one another (homophily)?

Do links form between 
different nodes?
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How do links form in the network?

Example: degree

r = assortativity coefficient Measures correlation in 
degrees of linked nodes
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physics coauthorshipa 52 909 0.363
biology coauthorshipa 1 520 251 0.127
mathematics coauthorshipb 253 339 0.120
film actor collaborationsc 449 913 0.208
company directorsd 7 673 0.276
Internete 10 697 −0.189
World-Wide Webf 269 504 −0.065
protein interactionsg 2 115 −0.156
neural networkh 307 −0.163
food webi 92 −0.276

m
o
d
el

s random graphu 0
Callaway et al.v δ/(1 + 2δ)
Barabási and Albertw 0

TABLE I: Size n and assortativity coefficient r for a num-
ber of different networks: collaboration networks of (a) sci-
entists in physics and biology [16], (b) mathematicians [17],
(c) film actors [4], and (d) businesspeople [18]; (e) connections
between autonomous systems on the Internet [19]; (f) undi-
rected hyperlinks between Web pages in a single domain [6];
(g) protein-protein interaction network in yeast [20]; (h) undi-
rected (and unweighted) synaptic connections in the neu-
ral network of the nematode C. Elegans [4]; (i) undirected
trophic relations in the food web of Little Rock Lake, Wis-
consin [21]. The last three lines give analytic results for model
networks in the limit of large network size: (u) the random
graph of Erdős and Rényi [22]; (v) the grown graph model of
Callaway et al. [15]; (w) the preferential attachment model of
Barabási and Albert [6].

where ji, ki are the degrees of the vertices at the ends of
the ith edge, with i = 1 . . .M [36].

In Table I we show values of r for a variety of real-world
networks. As the table shows, of the social networks
studied (the top five entries in the table) all have signifi-
cant assortative mixing, which accords with accepted wis-
dom within the sociological community. By contrast, the
technological and biological networks studied (the mid-
dle five entries) all have disassortative mixing—high de-
gree vertices preferentially connect with low degree ones
and vice versa. Various explanations for this observation
suggest themselves. In the case of the Internet, for ex-
ample, it appears that the high degree vertices mostly
represent connectivity providers—telephone companies
and other communications carriers—who typically have
a large number of connections to clients who themselves
have only a single connection [19]. Thus the high-degree
vertices do indeed tend to be connected to the low-degree
ones.

We have also calculated r analytically for three mod-
els of networks: (1) the random graph of Erdős and
Rényi [22], in which edges are placed at random between
a fixed set of vertices; (2) the grown graph model of
Callaway et al. [15], in which both edges and vertices
are added at random at constant but possibly different
rates, the ratio of the rates being denoted δ; (3) the grown
graph model of Barabási and Albert [6], in which both
edges and vertices are added, and one end of each edge
is added with linear preferential attachment.

For the random graph, since edges are placed at ran-
dom without regard to vertex degree it follows trivially
that r = 0 in the limit of large graph size. The model
of Callaway et al. however, although apparently similar
in construction, gives a markedly different result. From
Eq. (21) of Ref. 15, ejk for this model satisfies the recur-
rence relation

(1 + 4δ)ejk = 2δ(ej−1,k + ej,k−1) + pjpk, (5)

and the degree distribution is pk = (2δ)k/(1 + 2δ)k+1.
Substituting into Eq. (3) and making use of Eq. (2), we
then find that r = δ/(1 + 2δ). Thus the model shows
significant assortative mixing, with a maximum value of
r = 1

2 in the limit of large δ. This agrees with intu-
ition [15]: in the grown graph the older vertices have
higher degree and also tend to have higher probability
of being connected to one another, simply by virtue of
being around for longer. Thus one would expect positive
assortative mixing.

The model of Barabási and Albert [6] provides an inter-
esting counter-example to this intuition. Although this
is a grown graph model, in which again older vertices
have higher degree [23], it shows no assortative mixing at
all. Making use of Eq. (42) of Ref. 24 we can show that
ejk for the model of Barabási and Albert goes asymp-
totically as 1/(j2k2) − 6/(j + k)4 in the limit of large j
and k, which implies that r → 0 as (log2 N)/N as N
becomes large. The model of Barabási and Albert has
been used as a model of the structure of the Internet and
the World-Wide Web. Since these networks show signif-
icant disassortative mixing however (Table I), it is clear
that the model is incomplete. It is an interesting open
question what type of network evolution processes could
explain the values of r observed in real-world networks.

Turning now to theoretical developments, we propose
a simple model of an assortatively mixed network, which
is exactly solvable for many of its properties in the limit
of large graph size. Consider the ensemble of graphs in
which the distribution ejk takes a specified value. This
defines a random graph model similar in concept to the
random graphs with specified degree sequence [5, 25, 26],
except for the added element of assortative mixing.

Consider a typical member of this ensemble in the limit
of large graph size, and consider a randomly chosen edge
in that graph, one end of which is attached to a vertex of
degree j. We ask what the probability distribution is of
the number of other vertices reachable by following that
edge. Let this probability distribution be generated by a
generating function Gj(x), which depends in general on
the degree j of the starting vertex. By arguments similar
to those of Ref. 5, we can show that Gj(x) must satisfy
a self-consistency condition of the form

Gj(x) = x

∑

k ejk

[

Gk(x)
]k

∑

k ejk
, (6)

while the number of vertices reachable from a randomly

Newman,  Assortative mixing in networks, Phys Rev Lett, 2002
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M
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Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge

* Present address: Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA
Building, 420 W118 St, New York, New York 10027, USA.
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Scale-free networks

P(k) ~ k-λ

level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at !0.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.

For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6–8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
states (ALO). It is likely that the spin polariza-
tion should also depend on the position of the
Fermi level with respect to the electronic levels
of each character above and below the gap of
the insulator. In addition, as an evanescent
wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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Emergence of Scaling in
Random Networks

Albert-László Barabási* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (1). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-
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Fig. 3. Bias dependence of the TMR ratio in (A)
Co/STO/LSMO and (B) Co/ALO/STO/LSMO
tunnel junctions.
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ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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these systems is that the network continuous-
ly expands by the addition of new vertices
that are connected to the vertices already
present in the system.

Second, the random network models as-
sume that the probability that two vertices are
connected is random and uniform. In con-
trast, most real networks exhibit preferential
connectivity. For example, a new actor is
most likely to be cast in a supporting role
with more established and better-known ac-
tors. Consequently, the probability that a new
actor will be cast with an established one is
much higher than that the new actor will be
cast with other less-known actors. Similarly,
a newly created Web page will be more likely
to include links to well-known popular doc-
uments with already-high connectivity, and a
new manuscript is more likely to cite a well-
known and thus much-cited paper than its
less-cited and consequently less-known peer.
These examples indicate that the probability
with which a new vertex connects to the
existing vertices is not uniform; there is a
higher probability that it will be linked to a
vertex that already has a large number of
connections.

We next show that a model based on these
two ingredients naturally leads to the ob-
served scale-invariant distribution. To incor-
porate the growing character of the network,
starting with a small number (m0 ) of vertices,
at every time step we add a new vertex with
m(!m0 ) edges that link the new vertex to m
different vertices already present in the sys-
tem. To incorporate preferential attachment,
we assume that the probability ! that a new
vertex will be connected to vertex i depends
on the connectivity ki of that vertex, so that
!(ki ) " ki /#j kj. After t time steps, the
model leads to a random network with t $
m0 vertices and mt edges. This network
evolves into a scale-invariant state with the
probability that a vertex has k edges, follow-
ing a power law with an exponent %model "
2.9 & 0.1 (Fig. 2A). Because the power law
observed for real networks describes systems
of rather different sizes at different stages of
their development, it is expected that a cor-
rect model should provide a distribution
whose main features are independent of time.
Indeed, as Fig. 2A demonstrates, P(k) is
independent of time (and subsequently inde-
pendent of the system size m0 $ t), indicat-
ing that despite its continuous growth, the
system organizes itself into a scale-free sta-
tionary state.

The development of the power-law scal-
ing in the model indicates that growth and
preferential attachment play an important role
in network development. To verify that both
ingredients are necessary, we investigated
two variants of the model. Model A keeps the
growing character of the network, but prefer-
ential attachment is eliminated by assuming

that a new vertex is connected with equal
probability to any vertex in the system [that
is, !(k) " const " 1/(m0 $ t ' 1)]. Such
a model (Fig. 2B) leads to P(k) (
exp(')k), indicating that the absence of
preferential attachment eliminates the scale-
free feature of the distribution. In model B,
we start with N vertices and no edges. At
each time step, we randomly select a vertex
and connect it with probability !(ki ) " ki /
#j k j to vertex i in the system. Although at
early times the model exhibits power-law
scaling, P(k) is not stationary: because N is
constant and the number of edges increases
with time, after T ! N 2 time steps the system
reaches a state in which all vertices are con-
nected. The failure of models A and B indi-
cates that both ingredients—growth and pref-
erential attachment—are needed for the de-
velopment of the stationary power-law distri-
bution observed in Fig. 1.

Because of the preferential attachment, a
vertex that acquires more connections than
another one will increase its connectivity at a
higher rate; thus, an initial difference in the
connectivity between two vertices will in-
crease further as the network grows. The rate
at which a vertex acquires edges is *ki /*t "
ki / 2t, which gives ki(t) " m(t/ti )

0.5, where
ti is the time at which vertex i was added to
the system (see Fig. 2C), a scaling property
that could be directly tested once time-re-
solved data on network connectivity becomes
available. Thus older (with smaller ti ) verti-
ces increase their connectivity at the expense
of the younger (with larger ti ) ones, leading
over time to some vertices that are highly
connected, a “rich-get-richer” phenomenon
that can be easily detected in real networks.
Furthermore, this property can be used to
calculate % analytically. The probability that
a vertex i has a connectivity smaller than k,
P[ki(t) + k], can be written as P(ti ,
m2t/k2). Assuming that we add the vertices
to the system at equal time intervals, we
obtain P(ti , m2t/k2) " 1 ' P(ti !

m2t/k2) " 1 ' m2t/k2(t $ m0). The prob-
ability density P(k) can be obtained from
P(k) " *P[ki(t) + k]/*k, which over long
time periods leads to the stationary solution

P-k. "
2m2

k3

giving % " 3, independent of m. Although it
reproduces the observed scale-free distribu-
tion, the proposed model cannot be expected
to account for all aspects of the studied net-
works. For that, we need to model these
systems in more detail. For example, in the
model we assumed linear preferential attach-
ment; that is, !(k) ( k. However, although
in general !(k) could have an arbitrary non-
linear form !(k) ( k/, simulations indicate
that scaling is present only for / " 1. Fur-
thermore, the exponents obtained for the dif-
ferent networks are scattered between 2.1 and
4. However, it is easy to modify our model to
account for exponents different from % " 3.
For example, if we assume that a fraction p of
the links is directed, we obtain %( p) " 3 '
p, which is supported by numerical simula-
tions (16). Finally, some networks evolve not
only by adding new vertices but by adding
(and sometimes removing) connections be-
tween established vertices. Although these
and other system-specific features could
modify the exponent %, our model offers the
first successful mechanism accounting for the
scale-invariant nature of real networks.

Growth and preferential attachment are
mechanisms common to a number of com-
plex systems, including business networks
(17, 18), social networks (describing individ-
uals or organizations), transportation net-
works (19), and so on. Consequently, we
expect that the scale-invariant state observed
in all systems for which detailed data has
been available to us is a generic property of
many complex networks, with applicability
reaching far beyond the quoted examples. A
better description of these systems would
help in understanding other complex systems

Fig. 2. (A) The power-law connectivity distribution at t " 150,000 (E) and t " 200,000 (!) as
obtained from the model, using m0 " m " 5. The slope of the dashed line is % " 2.9. (B) The
exponential connectivity distribution for model A, in the case of m0 " m " 1 (E), m0 " m "
3 (!), m0 " m " 5 ({), and m0 " m " 7 (‚). (C) Time evolution of the connectivity for two
vertices added to the system at t1 " 5 and t2 " 95. The dashed line has slope 0.5.
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Network search
Kleinberg

The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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Network search

The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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Network search

The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.

© 2000 Macmillan Magazines Ltd

Long-range links

Neighbor at distance r linked 
with probability:

Plink(r) =
r�↵

P
` `

�↵

↵

↵ = 0

↵ ! 1

“clustering exponent”



Network search
Kleinberg 
model

The small-world phenomenon — the
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first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
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I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Navigation in a small world
It is easier to find short chains between points in some networks than others.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of
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The strength of weak ties

Algorithms are fine but there are also 
sociological aspects to navigation/
message passing

Q: which links are used to navigation?
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How do people find jobs?

Not from best friends—they have the 
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Infrequent contacts—new pools of info
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J.-P. Onnela*†‡, J. Saramäki*, J. Hyvönen*, G. Szabó§¶, D. Lazer!, K. Kaski*, J. Kertész*,**, and A.-L. Barabási§¶

*Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FI-02015 TKK, Helsinki, Finland; †Physics Department,
Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United Kingdom; §Department of Physics and Center for Complex Networks Research,
University of Notre Dame, South Bend, IN 46556; ¶Center for Cancer Systems Biology, Dana–Farber Cancer Institute, Harvard University,
Boston, MA 02115; !John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138; and **Department of
Theoretical Physics, Budapest University of Technology and Economics, H1111, Budapest, Hungary

Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved January 27, 2007 (received for review November 18, 2006)

Electronic databases, from phone to e-mails logs, currently provide
detailed records of human communication patterns, offering novel
avenues to map and explore the structure of social and commu-
nication networks. Here we examine the communication patterns
of millions of mobile phone users, allowing us to simultaneously
study the local and the global structure of a society-wide commu-
nication network. We observe a coupling between interaction
strengths and the network’s local structure, with the counterin-
tuitive consequence that social networks are robust to the removal
of the strong ties but fall apart after a phase transition if the weak
ties are removed. We show that this coupling significantly slows
the diffusion process, resulting in dynamic trapping of information
in communities and find that, when it comes to information dif-
fusion, weak and strong ties are both simultaneously ineffective.

complex systems " complex networks " diffusion and spreading "
phase transition " social systems

Uncovering the structure and function of communication
networks has always been constrained by the practical

difficulty of mapping out interactions among a large number of
individuals. Indeed, most of our current understanding of com-
munication and social networks is based on questionnaire data,
reaching typically a few dozen individuals and relying on the
individual’s opinion to reveal the nature and the strength of the
ties. The fact that currently an increasing fraction of human
interactions are recorded, from e-mail (1–3) to phone records
(4), offers unprecedented opportunities to uncover and explore
the large scale characteristics of communication and social
networks (5). Here we take a first step in this direction by
exploiting the widespread use of mobile phones to construct a
map of a society-wide communication network, capturing the
mobile interaction patterns of millions of individuals. The data
set allows us to explore the relationship between the topology of
the network and the tie strengths between individuals, informa-
tion that was inaccessible at the societal level before. We
demonstrate a local coupling between tie strengths and network
topology, and show that this coupling has important conse-
quences for the network’s global stability if ties are removed, as
well as for the spread of news and ideas within the network.

A significant portion of a country’s communication network
was reconstructed from 18 weeks of all mobile phone call records
among !20% of the country’s entire population, 90% of whose
inhabitants had a mobile phone subscription [see supporting
information (SI) Appendix]. Whereas a single call between two
individuals during 18 weeks may not carry much information,
reciprocal calls of long duration between two users serves as a
signature of some work-, family-, leisure-, or service-based
relationship. Therefore, to translate the phone log data into a
network representation that captures the characteristics of the
underlying communication network, we connected two users
with an undirected link if there had been at least one recipro-
cated pair of phone calls between them (i.e., A called B, and B
called A) and defined the strength, wAB " wBA, of a tie as the

aggregated duration of calls between users A and B. This
procedure eliminates a large number of one-way calls, most of
which correspond to single events, suggesting that they typically
reach individuals that the caller does not know personally. The
resulting mobile call graph (MCG) (4) contains N " 4.6 # 106

nodes and L " 7.0 # 106 links, the vast majority (84.1%) of these
nodes belonging to a single connected cluster [giant component
(GC)]. Given the very large number of users and communication
events in the database, we find that the statistical characteristics
of the network and the GC are largely saturated, observing little
difference between a two- or a three-month-long sample. Note
that the MCG captures only a subset of all interactions between
individuals, a detailed mapping of which would require face-to-
face, e-mail, and land line communications as well. Yet, although
mobile phone data capture just a slice of communication among
people, research on media multiplexity suggests that the use of
one medium for communication between two people implies
communication by other means as well (6). Furthermore, in the
absence of directory listings, the mobile phone data are skewed
toward trusted interactions (that is, people tend to share their
mobile numbers only with individuals they trust). Therefore, the
MCG can be used as a proxy of the communication network
between the users. It is of sufficient detail to allow us to address
the large-scale features of the underlying human communication
network and the major trends characterizing it.

Results
The MCG has a skewed degree distribution with a fat tail (Fig.
1A), indicating that although most users communicate with only
a few individuals, a small minority talks with dozens (4, 7). If the
tail is approximated by a power law, which appears to fit the data
better than an exponential distribution, the obtained exponent
!k " 8.4 is significantly higher than the value observed for
landlines (! " 2.1 for the in-degree distribution; see refs. 8 and
32). For such a rapidly decaying degree distribution, the hubs are
few, and therefore many properties of traditional scale-free
networks (33), from anomalous diffusion (9) to error tolerance
(10), are absent. This decay is probably rooted in the fact that
institutional phone numbers, corresponding to the vast majority
of large hubs in the case of land lines, are absent, and in contrast
with e-mail, in which a single e-mail can be sent to many
recipients, resulting in well-connected hubs (1), a mobile phone
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absence of directory listings, the mobile phone data are skewed
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mobile numbers only with individuals they trust). Therefore, the
MCG can be used as a proxy of the communication network
between the users. It is of sufficient detail to allow us to address
the large-scale features of the underlying human communication
network and the major trends characterizing it.
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The MCG has a skewed degree distribution with a fat tail (Fig.
1A), indicating that although most users communicate with only
a few individuals, a small minority talks with dozens (4, 7). If the
tail is approximated by a power law, which appears to fit the data
better than an exponential distribution, the obtained exponent
!k " 8.4 is significantly higher than the value observed for
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32). For such a rapidly decaying degree distribution, the hubs are
few, and therefore many properties of traditional scale-free
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conversation typically represents a one-to-one communication.
The tie strength distribution is broad (Fig. 1B), however, decay-
ing with an exponent !w ! 1.9, so that although the majority of
ties correspond to a few minutes of airtime, a small fraction of
users spend hours chatting with each other. This finding is rather
unexpected, given that fat-tailed tie strength distributions have
been observed mainly in networks characterized by global trans-
port processes, such as the number of passengers carried by the
airline transportation network (11), the reaction fluxes in met-
abolic networks (12), or packet transfer on the Internet (13), in
which case the individual f luxes are determined by the global
network topology. An important feature of such global f low
processes is local conservation: All passengers arriving to an
airport need to be transported away, each molecule created by
a reaction needs to be consumed by some other reaction, or each
packet arriving to a router needs to be sent to other routers.
Although the main purpose of the phone is information transfer
between two individuals, such local conservation that constrains
or drives the tie strengths are largely absent, making any
relationship between the topology of the MCG and local tie
strengths less than obvious.

Complex networks often organize themselves according to a
global efficiency principle, meaning that the tie strengths are
optimized to maximize the overall f low in the network (13, 14).
In this case the weight of a link should correlate with its
betweenness centrality, which is proportional to the number of
shortest paths between all pairs of nodes passing through it (refs.
13, 15, and 16, and S. Valverde and R. V. Sole, unpublished
work). Another possibility is that the strength of a particular tie
depends only on the nature of the relationship between two

individuals and is thus independent of the network surrounding
the tie (dyadic hypothesis). Finally, the much studied strength of
weak ties hypothesis (17–19) states that the strength of a tie
between A and B increases with the overlap of their friendship
circles, resulting in the importance of weak ties in connecting
communities. The hypothesis leads to high betweenness central-
ity for weak links, which can be seen as the mirror image of the
global efficiency principle.

In Fig. 2A, we show the network in the vicinity of a randomly
selected individual, where the link color corresponds to the
strength of each tie. It appears from this figure that the network
consists of small local clusters, typically grouped around a
high-degree individual. Consistent with the strength of weak ties
hypothesis, the majority of the strong ties are found within the
clusters, indicating that users spend most of their on-air time
talking to members of their immediate circle of friends. In
contrast, most links connecting different communities are visibly
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Fig. 1. Characterizing the large-scale structure and the tie strengths of the
mobile call graph. (A and B) Vertex degree (A) and tie strength distribution (B).
Each distribution was fitted with P(x) ! a(x " x0)#x exp(#x/xc), shown as a blue
curve, where x corresponds to either k or w. The parameter values for the fits
are k0 ! 10.9, !k ! 8.4, kc ! $ (A, degree), and w0 ! 280, !w ! 1.9, wc ! 3.45 %
105 (B, weight). (C) Illustration of the overlap between two nodes, vi and vj, its
value being shown for four local network configurations. (D) In the real
network, the overlap &O'w (blue circles) increases as a function of cumulative
tie strength Pcum(w), representing the fraction of links with tie strength
smaller than w. The dyadic hypothesis is tested by randomly permuting the
weights, which removes the coupling between &O'w and w (red squares). The
overlap &O'b decreases as a function of cumulative link betweenness centrality
b (black diamonds).
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Fig. 2. The structure of the MCG around a randomly chosen individual. Each
link represents mutual calls between the two users, and all nodes are shown
that are at distance less than six from the selected user, marked by a circle in
the center. (A) The real tie strengths, observed in the call logs, defined as the
aggregate call duration in minutes (see color bar). (B) The dyadic hypothesis
suggests that the tie strength depends only on the relationship between the
two individuals. To illustrate the tie strength distribution in this case, we
randomly permuted tie strengths for the sample in A. (C) The weight of the
links assigned on the basis of their betweenness centrality bij values for
the sample in A as suggested by the global efficiency principle. In this case, the
links connecting communities have high bij values (red), whereas the links
within the communities have low bij values (green).
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A common property of many large networks, including the Internet, is that the connectivity of the
various nodes follows a scale-free power-law distribution, P!k" ! ck2a . We study the stability of such
networks with respect to crashes, such as random removal of sites. Our approach, based on percolation
theory, leads to a general condition for the critical fraction of nodes, pc, that needs to be removed before
the network disintegrates. We show analytically and numerically that for a # 3 the transition never
takes place, unless the network is finite. In the special case of the physical structure of the Internet
!a # 2.5", we find that it is impressively robust, with pc . 0.99.

PACS numbers: 84.35.+i, 02.50.Cw, 05.50.+q, 64.60.Ak

Recently there has been increasing interest in the for-
mation of random networks and in the connectivity of
these networks, especially in the context of the Internet
[1–9]. When such networks are subject to random break-
downs — a fraction p of the nodes and their connections
are removed randomly —their integrity might be compro-
mised: when p exceeds a certain threshold, p . pc, the
network disintegrates into smaller, disconnected parts. Be-
low that critical threshold, there still exists a connected
cluster that spans the entire system (its size is propor-
tional to that of the entire system). Random breakdown
in networks can be seen as a case of infinite-dimensional
percolation. Two cases that have been solved exactly are
Cayley trees [10] and Erdős-Rényi (ER) random graphs
[11], where the networks collapse at known thresholds pc.
Percolation on small-world networks (i.e., networks where
every node is connected to its neighbors, plus some ran-
dom long-range connections [12]) has also been studied
by Moore and Newman [13]. Albert et al. have raised the
question of random failures and intentional attack on net-
works [1]. Here we consider random breakdown in the
Internet (and similar networks) and introduce an analytical
approach to finding the critical point. The site connectivity
of the physical structure of the Internet, where each com-
munication node is considered as a site, is power law, to
a good approximation [14]. We introduce a new general
criterion for the percolation critical threshold of randomly
connected networks. Using this criterion, we show analyti-
cally that the Internet undergoes no transition under ran-
dom breakdown of its nodes. In other words, a connected
cluster of sites that spans the Internet survives even for ar-
bitrarily large fractions of crashed sites.

We consider networks whose nodes are connected ran-
domly to each other, so that the probability for any two
nodes to be connected depends solely on their respective
connectivity (the number of connections emanating from
a node). We argue that, for randomly connected networks
with connectivity distribution P!k", the critical breakdown
threshold may be found by the following criterion: if loops

of connected nodes may be neglected, the percolation tran-
sition takes place when a node (i), connected to a node ( j)
in the spanning cluster, is also connected to at least one
other node—otherwise the spanning cluster is fragmented.
This may be written as

$ki j i $ j% !
X

ki

kiP!ki j i $ j" ! 2 , (1)

where the angular brackets denote an ensemble average, ki
is the connectivity of node i, and P!ki j i $ j" is the con-
ditional probability that node i has connectivity ki , given
that it is connected to node j. But, by Bayes rule for condi-
tional probabilities P!ki j i $ j" ! P!ki , i $ j"&P!i $
j" ! P!i $ j j ki"P!ki"&P!i $ j", where P!ki , i $ j" is
the joint probability that node i has connectivity ki and
that it is connected to node j. For randomly connected net-
works (neglecting loops) P!i $ j" ! $k%&!N 2 1" and
P!i $ j j ki" ! ki&!N 2 1", where N is the total number
of nodes in the network. It follows that the criterion (1)
is equivalent to

k '
$k2%
$k%

! 2 , (2)

at criticality.
Loops can be ignored below the percolation transition,

k , 2, because the probability of a bond to form a loop
in an s-nodes cluster is proportional to !s&N"2 (i.e., pro-
portional to the probability of choosing two sites in that
cluster). The fraction of loops in the system Ploop is

Ploop ~
X

i

s2
i

N2 ,
X

i

siS
N2 !

S
N

, (3)

where the sum is taken over all clusters, and si is the size
of the ith cluster. Thus, the overall fraction of loops in
the system is smaller than S&N , where S is the size of
the largest existing cluster. Below criticality S is smaller
than order N (for ER graphs S is of order lnN [11]), so
the fraction of loops becomes negligible in the limit of
N ! `. Similar arguments apply at criticality.
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important consequence of nonlinear gravitational processes if the
initial conditions are gaussian, and is a potentially powerful signa-
ture to exploit in statistical tests of this class of models; see Fig. 1.

The information needed to fully specify a non-gaussian field (or,
in a wider context, the information needed to define an image8)
resides in the complete set of Fourier phases. Unfortunately,
relatively little is known about the behaviour of Fourier phases in
the nonlinear regime of gravitational clustering9–14, but it is essential
to understand phase correlations in order to design efficient
statistical tools for the analysis of clustering data. A first step on
the road to a useful quantitative description of phase information is
to represent it visually. We do this using colour, as shown in Fig. 2.
To view the phase coupling in an N-body simulation, we Fourier-
transform the density field; this produces a complex array contain-
ing the real (R) and imaginary (I) parts of the transformed ‘image’,
with the pixels in this array labelled by wavenumber k rather than
position x. The phase for each wavenumber, given by
f ¼ arctanðI=RÞ, is then represented as a hue for that pixel.

The rich pattern of phase information revealed by this method
(see Fig. 3) can be quantified, and related to the gravitational
dynamics of its origin. For example, in our analysis of phase
coupling5 we introduced a quantity Dk:

Dk ! fkþ1 ! fk ð4Þ

This quantity measures the difference in phase of modes with
neighbouring wavenumbers in one dimension. We refer to Dk as
the phase gradient. To apply this idea to a two-dimensional
simulation, we simply calculate gradients in the x and y directions
independently. Because the difference between two circular random
variables is itself a circular random variable, the distribution of Dk

should initially be uniform. As the fluctuations evolve waves begin
to collapse, spawning higher-frequency modes in phase with the
original15. These then interact with other waves to produce the non-
uniform distribution of Dk seen in Fig. 3.

It is necessary to develop quantitative measures of phase infor-
mation that can describe the structure displayed in the colour
representations. In the beginning, the phases fk are random and
so are the Dk obtained from them. This corresponds to a state of
minimal information, or in other words, maximum entropy. As
information flows into the phases, the information content must
increase and the entropy decrease. This can be quantified by
defining an information entropy for the set of phase gradients5.
We construct a frequency distribution, f(D), of the values of Dk

obtained from the whole map. The entropy is then defined as

SðDÞ ¼ ! !f ðDÞ log½f ðDÞÿdD ð5Þ

where the integral is taken over all values of D, that is, from 0 to 2p.
The use of D, rather than f itself, to define entropy is one way of
accounting for the lack of translation invariance of f, a problem that
was missed in previous attempts to quantify phase entropy16. A
uniform distribution of D is a state of maximum entropy (mini-
mum information), corresponding to gaussian initial conditions
(random phases). This maximal value of Smax ¼ logð2pÞ is a
characteristic of gaussian fields. As the system evolves, it moves
into states of greater information content (that is, lower entropy).
The scaling of S with clustering growth displays interesting
properties5, establishing an important link between the spatial
pattern and the physical processes driving clustering growth. This
phase information is a unique ‘fingerprint’ of gravitational instabil-
ity, and it therefore also furnishes statistical tests of the presence of
any initial non-gaussianity17–19. !
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Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to
the robustness of the underlying metabolic network1. Complex
communication networks2 display a surprising degree of robust-
ness: although key components regularly malfunction, local fail-
ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex
systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,

© 2000 Macmillan Magazines Ltd

Nature, 2000 Phys Rev Lett, 2000



Some networks are 
special

Scale-free graphs are robust against 
random failures!



Some networks are 
special

Scale-free graphs

si
ze

 o
f G

C
C

fraction of surviving nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

are robust against 
random failures!



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Some networks are 
special

Scale-free graphs

si
ze

 o
f G

C
C

fraction of surviving nodes

are robust against 
random failures!



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Some networks are 
special

Scale-free graphs

si
ze

 o
f G

C
C

fraction of surviving nodes

Every node must fail
to disconnect network

are robust against 
random failures!



But there’s a price

Scale-free networks robust to random failures

Do failures need to be random?



But there’s a price

Scale-free networks robust to random failures

Do failures need to be random?

Attack the network



But there’s a price

Scale-free networks robust to random failures

Do failures need to be random?

Attack the network
Attack the hubs



But there’s a price

Scale-free networks robust to random failures

Do failures need to be random?

Attack the network
Attack the hubs
Hubs are more likely to fail



But there’s a price

Scale-free networks robust to random failures



But there’s a price

Scale-free networks robust to random failures

Scale-free networks especially 
vulnerable to targeted 
attacks!



But there’s a price

Scale-free networks robust to random failures

Scale-free networks especially 
vulnerable to targeted 
attacks!

Deleting a small number of 
hubs will drastically 
disconnect the network

important consequence of nonlinear gravitational processes if the
initial conditions are gaussian, and is a potentially powerful signa-
ture to exploit in statistical tests of this class of models; see Fig. 1.

The information needed to fully specify a non-gaussian field (or,
in a wider context, the information needed to define an image8)
resides in the complete set of Fourier phases. Unfortunately,
relatively little is known about the behaviour of Fourier phases in
the nonlinear regime of gravitational clustering9–14, but it is essential
to understand phase correlations in order to design efficient
statistical tools for the analysis of clustering data. A first step on
the road to a useful quantitative description of phase information is
to represent it visually. We do this using colour, as shown in Fig. 2.
To view the phase coupling in an N-body simulation, we Fourier-
transform the density field; this produces a complex array contain-
ing the real (R) and imaginary (I) parts of the transformed ‘image’,
with the pixels in this array labelled by wavenumber k rather than
position x. The phase for each wavenumber, given by
f ¼ arctanðI=RÞ, is then represented as a hue for that pixel.

The rich pattern of phase information revealed by this method
(see Fig. 3) can be quantified, and related to the gravitational
dynamics of its origin. For example, in our analysis of phase
coupling5 we introduced a quantity Dk:

Dk ! fkþ1 ! fk ð4Þ

This quantity measures the difference in phase of modes with
neighbouring wavenumbers in one dimension. We refer to Dk as
the phase gradient. To apply this idea to a two-dimensional
simulation, we simply calculate gradients in the x and y directions
independently. Because the difference between two circular random
variables is itself a circular random variable, the distribution of Dk

should initially be uniform. As the fluctuations evolve waves begin
to collapse, spawning higher-frequency modes in phase with the
original15. These then interact with other waves to produce the non-
uniform distribution of Dk seen in Fig. 3.

It is necessary to develop quantitative measures of phase infor-
mation that can describe the structure displayed in the colour
representations. In the beginning, the phases fk are random and
so are the Dk obtained from them. This corresponds to a state of
minimal information, or in other words, maximum entropy. As
information flows into the phases, the information content must
increase and the entropy decrease. This can be quantified by
defining an information entropy for the set of phase gradients5.
We construct a frequency distribution, f(D), of the values of Dk

obtained from the whole map. The entropy is then defined as

SðDÞ ¼ ! !f ðDÞ log½f ðDÞÿdD ð5Þ

where the integral is taken over all values of D, that is, from 0 to 2p.
The use of D, rather than f itself, to define entropy is one way of
accounting for the lack of translation invariance of f, a problem that
was missed in previous attempts to quantify phase entropy16. A
uniform distribution of D is a state of maximum entropy (mini-
mum information), corresponding to gaussian initial conditions
(random phases). This maximal value of Smax ¼ logð2pÞ is a
characteristic of gaussian fields. As the system evolves, it moves
into states of greater information content (that is, lower entropy).
The scaling of S with clustering growth displays interesting
properties5, establishing an important link between the spatial
pattern and the physical processes driving clustering growth. This
phase information is a unique ‘fingerprint’ of gravitational instabil-
ity, and it therefore also furnishes statistical tests of the presence of
any initial non-gaussianity17–19. !
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Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556, USA

................. ......................... ......................... ......................... ......................... .........................

Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to
the robustness of the underlying metabolic network1. Complex
communication networks2 display a surprising degree of robust-
ness: although key components regularly malfunction, local fail-
ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex
systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,

© 2000 Macmillan Magazines Ltd
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Breakdown of the Internet under Intentional Attack
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We study the tolerance of random networks to intentional attack, whereby a fraction p of the most
connected sites is removed. We focus on scale-free networks, having connectivity distribution P!k" #
k2a , and use percolation theory to study analytically and numerically the critical fraction pc needed
for the disintegration of the network, as well as the size of the largest connected cluster. We find that
even networks with a # 3, known to be resilient to random removal of sites, are sensitive to intentional
attack. We also argue that, near criticality, the average distance between sites in the spanning (largest)
cluster scales with its mass, M, as

p
M, rather than as logk M, as expected for random networks away

from criticality.

DOI: 10.1103/PhysRevLett.86.3682 PACS numbers: 89.20.Hh, 02.50.Cw, 64.60.Ak, 89.75.Hc

The question of stability of scale-free random networks
to removal of a fraction of their sites, especially in the con-
text of the Internet, has recently been of interest [1–3].
The Internet can be viewed as a special case of a random,
scale-free network, where the probability of a site to be
connected to k other sites follows a power law: P!k" #
k2a (a $ 2.5, for the Internet). It is now well established
that if a fraction p of the sites is removed randomly, then
for a . 3 there exists a critical threshold, pc, such that for
p . pc the network disintegrates; networks with a # 3
are more resilient and do not undergo this transition, al-
though finite networks (such as the Internet) may eventu-
ally be disrupted when nearly all of their sites are removed,
as shown numerically in [1,2], and analytically in [2].

Albert et al. [1] have introduced a model for intentional
attack, or sabotage of random networks: the removal of
sites is not random, but rather sites with the highest con-
nectivity are targeted first. Their numerical simulations
suggest that scale-free networks are highly sensitive to this
kind of attack. In this Letter we study the problem of inten-
tional attack in scale-free networks. Our study focuses on
the exact value of the critical fraction needed for disruption
and the size of the remaining largest connected cluster. We
also study the distance between sites on this cluster near
the transition. We find, both analytically and numerically,
that scale-free networks are highly sensitive to sabotage of
a small fraction of the sites, for all values of a, lending
support to the view of Albert et al. [1].

In a recent paper [2] we have studied the properties
of the percolation phase transition in scale-free random
networks, and applied a general criterion for the existence
of a spanning cluster (a cluster whose size is proportional
to the size of the network) [2,4]:

k %
&k2'
&k'

! 2 . (1)

Here k is the site connectivity, and averages, indicated by
angular brackets, are taken over all sites of the network.
When a fraction p of the sites are randomly removed (or

a fraction p of the links are removed, or lead to deleted
sites), the distribution of site connectivity is changed from
the original P!k" to a new distribution P̃!k":

P̃!k" !
KX

k0$k
P!k0"

µ
k0

k

∂
!1 2 p"kpk02k . (2)

Using this criterion together with Eq. (1), the critical
threshold p ! pc is found to be

1 2 pc !
1

k0 2 1
, (3)

where k0 ! &k2
0'(&k0' is calculated from the original con-

nectivity distribution, before the removal of any sites [2].
A wide range of networks, including the Internet, have

site connectivities which follow a power-law distribution
[1,5,6]:

P!k" ! ck2a , k ! m, m 1 1, . . . , K , (4)

where k ! m is the minimal connectivity and k ! K is
an effective connectivity cutoff present in finite networks.
For the distribution (4), k0 can be approximated by [6]

k0 !
µ

2 2 a

3 2 a

∂
K32a 2 m32a

K22a 2 m22a
. (5)

This, together with Eq. (2), was used to show that networks
with a # 3, which have a divergent second moment, are
resilient to random deletion of sites [2]. Indeed, when the
number of sites in such networks N ! `, then the upper
cutoff K ! `, and there exists a spanning cluster for all
values of p , 1. Another approach, based on generating
functions, was introduced in [7] and was used to study a
similar problem in [3].

Consider now intentional attack, or sabotage [1],
whereby a fraction p of the sites with the highest connec-
tivity is removed. (The links emanating from the sites are
removed as well.) This has the following effect: (a) the
cutoff connectivity K reduces to some new value, K̃ , K ,
and (b) the connectivity distribution of the remaining sites

3682 0031-9007(01(86(16)(3682(4)$15.00 © 2001 The American Physical Society
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Synchronization phenomena in large populations of interacting elements are the subject of intense
research efforts in physical, biological, chemical, and social systems. A successful approach to the
problem of synchronization consists of modeling each member of the population as a phase oscillator.
In this review, synchronization is analyzed in one of the most representative models of coupled phase
oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and
many variations and extensions of the original model that have appeared in the last few years are
presented. Relevant applications of the model in different contexts are also included.
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the communities of G. Parisi (whose contributions in different fields
of physics are well known) shown in Fig. 2a are associated with his
fields of interest, as can be deduced from the titles of the papers
involved. The four-clique communities of the word ‘bright’ (Fig. 2b)
correspond to the various meanings of this word. An important
biological application is finding the communities of proteins, based
on their interactions. Indeed, most proteins in the communities
shown in Figs 2c and 3 can be associated with either protein
complexes or certain functions, as can be looked up by using the
GO-TermFinder package28 and the online tools of the Saccharomyces
Genome Database (SGD)29. For some proteins no function is yet
available. Thus, the fact that they show up in our approach as
members of communities can be interpreted as a prediction of
their functions. One such example can be seen in the enlarged

portion of Fig. 3. For the protein Ycr072c, which is required for
the viability of the cell and appears in the dark green community on
the right, SGD provides no biological process (function). By far the
most significant GO term for the biological process of this commu-
nity is ‘ribosome biogenesis/assembly’. We can therefore infer that
Ycr072c is likely to be involved in this process. In addition, new
cellular processes can be predicted if as yet unknown communities
are found with our method.
These examples (and further examples included in Supplementary

Information) show the advantages of our approach over the existing
divisive and agglomerative methods recently used for large real
networks. Divisive methods cut the network into smaller and smaller
pieces, and each node is forced to remain in only one community and
be separated from its other communities, most of which then
necessarily fall apart and disappear. This happens, for example,
with the word ‘bright’ when we apply the method described in ref.
16: it tends to stay together mostly with the words of the community
related to ‘light’, while most of its other communities (for example,
those related to ‘colours’; see Fig. 2b) completely disintegrate (‘green’
becomes associated with the vegetables, ‘orange’ with the fruits, and
so on). Agglomerative methods do the same, but in the reverse
direction. For example, when we applied the agglomerative method
of ref. 18, at some point ‘bright’, as a single word, joined a ‘commu-
nity’ of 890 other words. In addition, suchmethods inevitably lead to
a tree-like hierarchical rendering of the communities, whereas our
approach allows the construction of an unconstrained network of
communities.
The networks chosen above have been constructed in the following

ways. In the co-authorship network of the Los Alamos e-print
archives25 each article contributes a value 1/(n 2 1) to the weight
of the link between every pair of its n authors. In the South Florida
Free Association norms list26 the weight of a directed link from one
word to another indicates the frequency with which the people in the
survey associated the end point of the link with its starting point. For
our purposes these directed links have been replaced by undirected
ones with aweight equal to the sum of the weights of the correspond-
ing two oppositely directed links. In the Database of Interacting
Proteins (DIP) core list of the protein–protein interactions of
Saccharomyces cerevisiae27 each interaction represents an unweighted
link between the interacting proteins. These networks are very large,
consisting of 30,739, 10,617 and 2,609 nodes and 136,065, 63,788 and
6,355 links, respectively.
Although different values of k and w* might be optimal for the

local community structure around different nodes, we should set
some global criterion to fix their values if we wish to analyse the
statistical properties of the community structure of the entire net-
work. The criterionwe use is based on finding a community structure
that is as highly structured as possible. In the related percolation
phenomena23 a giant component appears when the number of links is
increased above some critical point. Therefore, to approach this
critical point from below, for each selected value of k (typically
between 3 and 6) we lower the threshold w* until the largest
community becomes twice as big as the second largest one. In this
way we ensure that we find asmany communities as possible, without
the negative effect of having a giant community that would smear out
the details of the community structure by merging many smaller
communities. We denote by f* the fraction of links stronger than w*,

Figure 3 |Network of the 82 communities in theDIP core list of the protein–
protein interactions of S. cerevisiae for k 5 4. The areas of the circles and
the widths of the links are proportional to the size of the corresponding
communities (scoma ) and to the size of the overlaps (sova;b), respectively. The
coloured communities (top) are cut out and magnified to reveal their
internal structure (bottom): the nodes and links of the original network have
the same colour as their communities, those that are shared by more than
one community are emphasized in red, and the grey links are not part of
these communities. The areas of the circles and the widths of the links are
proportional to the total number of communities they belong to.

Table 1 | Statistical properties of the network of communities

Network N com kdcoml kCcoml krl

Co-authorship 2,450 12.10 0.44 0.58
Word association 670 11.33 0.56 0.72
Protein interaction 82 1.54 0.17 0.26

Ncom is the number of communities, kdcoml is the average community degree, kCcoml is the
average clustering coefficient of the network of communities, and krl is the average fraction
of shared nodes in the communities.
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