

Introduction to Networks

Jim Bagrow

NetSci 2012 School June 18, 2012

Networks

Physics Sociology Biology Computer science Economics Math

Outline

Part I

- History
- Network examples/data
- Why study networks?
- Network quantifiers (jargon!)
- Types of networks
- Random network models

Part II

- Getting started on a computer
- Network search
- Network robustness
- Dynamics on networks

slides will be on **bagrow.com**

Good reference

Networks: An Introduction [Hardcover]

Mark Newman (Author)

★★★★★☆ ▼ (8 customer reviews) | Like (56)

List Price: \$85.00

Price: \$65.45 *Ime* You Save: \$19.55 (23%) <u>Special Offers Available</u>

In Stock.

Ships from and sold by Amazon.com. Gift-wrap available.

Want it delivered Monday, June 18? Express delivery is available to 60202. Order it in the next 12 hours and 13 mi and choose Local Express Delivery at checkout.

<u>34 new</u> from \$57.00 **<u>31 used</u>** from \$44.00

Part I

History

Leonhard Euler

Swiss mathematician

- Exceptionally prolific and influential
- He introduced **functions**!
 - First to write f(x)

866 works, first publication age 19

The Euler Archive

"Can I walk through the city and cross each of the seven bridges **exactly once**?"

Abstract away details

Graph theory!

Graph theory!

A **graph** is an object consisting of:

Onodes (vertices)

\ links (edges) between those nodes

Four-color theorem

"To color any **map** of countries without adjacent countries sharing the same color requires only **four colors**"

Four-color theorem

"To color any **map** of countries without adjacent countries sharing the same color requires only **four colors**"

Examples of networks and network data

Technology & Infrastructure

Nodes: power

generators/ consumers

generators/ consumers

Links:

transmission

lines

Understand cascading failures and blackouts

International roads 1990

energy.gov

Build network?

Alternative

gleamviz.org

nodes = airports

links = direct flights
between airports

gleamviz.org

Grady, et al. Nat Commun, 2012

Disease spreading

1901!

How many lines do we need for our phone calls?

Born	January 1, 1878 Lønborg, Denmark
Died	February 3, 1929
Occupation	Mathematician, statistician, and engineer

wikipedia

How many lines do we need for our phone calls?

Queueing Theory

Born	January 1, 1878
	Lønborg, Denmark
Died	February 3, 1929
Occupation	Mathematician, statistician, and
	engineer

wikipedia

Mobile phones

Mobile phones

Mobile phone data

HOME PAGE	E MY 1	TIMES	TODAY	S PAPER	VIDEO	MOST POPU	LAR TI	MES TOPICS		
Ehe Neu	lori	k Eim	¢S				S	cienc	е	
WORLD	U.S. 1	N.Y./RI	GION	BUSINES	S TEC	HNOLOGY	SCIENC	E HEALTH	SPORTS	OPINION
							EM	WIRONMENT	SPACE & CO	OSMOS
Cellp Habit	hon	ie Ti	racki	ing S	tudy	Shows	s We	're Cre	atures	of
Cellp Habit By JOHN S Published:	hon		racki	ing S	tudy	Shows	s We	're Cre	atures	of

Mobile phone data

Human mobility

M. C. González, et al., 2008

Bagrow and Lin, 2012

Internet

infovis.info > Atlas of cyberspace

Internet

Nodes

Computers, routers, subnetworks, etc.

Links

Connect nodes that share data

Web

First web server

WWW sits **on top of** the Internet

Nodes Web pages

Links <u>Hyperlinks</u>

Web

Email

MIME-Version: 1.0
Date: Fri, 30 Mar 2012 12:34:07 -0500
Subject: Re: Eqs
From: Jim Bagrow <bagrowjp@gmail.com>
To: Dirk Brockmann <brockmann@northwestern.edu>

Email

Email

Social networks

Information spreading

Disease spreading

Sociology

1934, 1953 (2nd ed)

1932

Information spreading

Disease spreading

Sociology

Applications

Marketing Vaccine distribution Social media Emergency response

••••

Information spreading Disease spreading Sociology

Applications

Marketing Vaccine distribution Social media **Emergency response** See next NetSci school session

Biological networks

Another **HUGE** area

Systems biology

Protein-Protein Interaction networks

PPI networks

Palla, et al. Nature, 2005

Palla, et al. Nature, 2005

Metabolic networks

Metabolic networks

nodes: Metabolites (chemicals) links: Reactions involving metabolites

Metabolic networks

Kyoto Encyclopedia of Genes and Genomes

http://www.expasy.org/tools/pathways/

"Diseaseome"

Goh, et al., PNAS 2007

"Diseaseome"

disease phenome

Ataxia-telangiectasia AR Perineal hypospadias ATM Androgen insensitivity T-cell lymphoblastic leukemia BRCA Papillary serous carcinoma BRCA2 Prostate cancer CDH1 Ovarian cancer GARS **HEXB** Lymphoma **KRAS** Breast cance LMNA MSH2 Pancreatic cancer PIK3CA Wilms tumor TP53 Spinal muscula r atrophy MAD1L Sandhoff disease RAD54 Lipodystrophy VAPB Charcot-Marie-Tooth disease CHEK2 Amyotrophic lateral sclerosis BSCL2 Silver spastic paraplegia syndrome ALS2 Spastic ataxia/paraplegia BRIP1 Fanconi anemia

disease genome

Network between diseases and genes associated with those diseases

Goh, et al., PNAS 2007

Goh, et al.

The human disease network

Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) Proc Natl Acad Sci USA 104:8685-8690

Goh, et al., PNAS 2007

The human disease network

Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) Proc Natl Acad Sci USA 104:8685-8690

Neuroscience

Neuroscience

Neuroscience

Network between neurons transmitting electrochemical signals
Networks from **Neuroimaging**

Networks from **Neuroimaging fMRI**

Divide the brain into **voxels**

Networks from **Neuroimaging fMRI**

Divide the brain into **voxels**

Measure time series of blood flow inside each voxel (BOLD)

Networks from **Neuroimaging fMRI**

Measure time series of blood flow inside each voxel (BOLD)

→ Links between voxels
→ with temporally
correlated time series

Food webs

Food webs

Ecology

Food webs

Nodes:

Organisms (compartments)

Ecology

Food webs

Nodes:

Organisms (compartments)

Links:

Organisms exchange carbon

Ecology

Food webs

Nodes:

Organisms (compartments)

Links:

Organisms exchange carbon

N. Martinez / Science Photo Library

Summary so far

general **objects** and the relationships

between them

objects

relationships

friendship, family, sexual

transmit data, shared power

bind together, signal transduction

objects

relationships

friendship, family, sexual

bind together, signal transduction

Why study networks?

Why study networks?

Simple components Interacting Complex systems

Network Quantifiers (Advanced terminology)

(and some major results)

Matrix of 1's and 0's storing which nodes are connected

Matrix of 1's and 0's storing which nodes are connected

Matrix of 1's and 0's storing which nodes are connected

For a network with N nodes, A is NxN

For a network with N nodes, A is NxN

A_{ij} = 1 if nodes *i* and *j* are linked

For a network with N nodes, A is NxN

A_{ij} = 1 if nodes *i* and *j* are linked

 $\sum_{j} A_{ij} = \text{number of neighbors of } i = k_i$

 $\sum_{i} k_{i}$

$$\sum_{i} k_i = \sum_{i} \sum_{j} A_{ij}$$

 $\sum_{i} k_{i} = \sum_{i} \sum_{j} A_{ij} = \text{twice the number of links}$

 $\sum_{i} k_{i} = \sum_{i} \sum_{j} A_{ij} = \text{twice the number of links}$

M links
$$\longrightarrow M = \frac{1}{2} \sum_{i,j} A_{ij}$$

$$\sum_{i} k_{i} = \sum_{i} \sum_{j} A_{ij} = \text{twice the number of links}$$

$$M \text{ links} \longrightarrow M = \frac{1}{2} \sum_{i,j} A_{ij}$$

Generalizations

A does not have to be symmetric

Elements of A don't have to be I's and O's

weighted network

Degree distribution

Degree–(perhaps) most fundamental property of a node

Degree distribution

Degree–(perhaps) most fundamental property of a node

What happens if I ask a random node, "what's your degree?"

Degree distribution

Probability that a random node has degree k

scale-free network

scale-free network

Some random data:

- 1.29766326467
- 1.27551208591
- 3.02324018927
- 1.57103746721
- 9.83447258547
- 1.73299464231
- 1.7323287015
- 5.38670711152
- 1.59810623031
- 1.49517306783

power law

 $y = Ax^b$

Why?

power law

 $y = Ax^b$

 $\log(\mathbf{y}) = \log(A\mathbf{x}^b)$

Why?

power law

Why?

 $y = Ax^{b}$ $\log(y) = \log(Ax^{b})$ $\log(y) = \log(A) + b\log(x)$

power law

Why?

 $y = Ax^{b}$ $\log(y) = \log(Ax^{b})$ $\log(y) = \log(A) + b \log(x)$ \downarrow y' = A' + bx'

What **causes** these **power** laws?

Neighbors(\blacksquare) ={ $\bigcirc \bigcirc \bigcirc$ }

Collective dynamics of 'small-world' networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

Feature of network neighborhoods

Collective dynamics of 'small-world' networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

Feature of network neighborhoods

How many **triangles** are in the neighborhood?

How many **triangles** are in the neighborhood?

How many triangles are possible?

How many **triangles** are in the neighborhood?

How many triangles **are possible**?

$$C_i = \frac{\text{number of triangles}}{\text{maximum number of triangles}} = \frac{T_i}{\frac{k_i(k_i-1)}{2}}$$

How many **triangles** are in the neighborhood?

How many triangles **are possible**?

$$C_i = \frac{\text{number of triangles}}{\text{maximum number of triangles}} = \frac{T_i}{\frac{k_i(k_i-1)}{2}}$$

$$C = \frac{1}{N} \sum_{i} C_i$$

Real networks **more triangles** than expected!

G₁ and G₂ are **isomorphic**!

Motifs: Frequently occurring isomorphic subgraphs

Motifs: Frequently occurring isomorphic subgraphs

Network Motifs: Simple Building Blocks of Complex Networks

R. Milo,¹ S. Shen-Orr,¹ S. Itzkovitz,¹ N. Kashtan,¹ D. Chklovskii,² U. Alon^{1*} Indicate the network possesses non-trivial **structure**

Milo, et al. Science, 2002

Motifs: Frequently occurring isomorphic subgraphs

Network Motifs: Simple Building Blocks of Complex Networks

R. Milo,¹ S. Shen-Orr,¹ S. Itzkovitz,¹ N. Kashtan,¹ D. Chklovskii,² U. Alon^{1*} Indicate the network possesses non-trivial **structure**

Milo, et al. Science, 2002

Assortativity

How do links form in the network?

Newman, Assortative mixing in networks, Phys Rev Lett, 2002
How do links form in the network?

Do **similar** nodes connect to one another (homophily)?

Newman, Assortative mixing in networks, Phys Rev Lett, 2002

How do links form in the network?

Do **similar** nodes connect to one another (homophily)?

Do links form between different nodes?

Newman, Assortative mixing in networks, Phys Rev Lett, 2002

How do links form in the network?

Example: degree

r = assortativity coefficient

Measures correlation in degrees of linked nodes

Assortativity

Redner, Nature, 2008

network	n	r
physics coauthorship ^a	52909	0.363
biology coauthorship ^a	1520251	0.127
mathematics coauthorship ^b	253339	0.120
film actor collaborations ^c	449913	0.208
company directors ^d	7673	0.276
Internet ^e	10697	-0.189
World-Wide Web ^f	269504	-0.065
protein interactions ^g	2115	-0.156
neural network ^h	307	-0.163
food web ⁱ	92	-0.276

Newman, Assortative mixing in networks, Phys Rev Lett, 2002

real-world networks

Distances and Networks

Networks aren't though of as existing in **ordinary space**

Distances and Networks

Networks aren't though of as existing in **ordinary space**

Space lets us tell how far apart things are

Distances and Networks

Networks aren't though of as existing in **ordinary space**

Space lets us tell how far apart things are

How to measure **distance** in a network?

Paths

Set of all paths

Compute shortest path from a node to **every other** node

Set of all paths

Compute shortest path from a node to **every other** node

Eccentricity of a node Longest shortest path starting from that node

Set of all paths

Compute shortest path from a node to **every other** node

Eccentricity of a node **Longest** shortest path starting from that node

Diameter of a network Longest of all shortest paths

Networks can be **disconnected** or **disjoint**

Components

(Connected components)

What nodes are "important"?

What nodes are "important"?

Rank nodes

Rank nodes

Degree centrality: rank nodes by their degree Hubs are most central

Rank nodes

Degree centrality: rank nodes by their degree Hubs are most central

Rank nodes

Rank nodes

Rank nodes

Betweenness centrality: rank nodes (or links) by number of shortest paths

Rank nodes

Betweenness centrality: rank nodes (or links) by number of shortest paths

Rank nodes

PageRank

Rank nodes

$$\mathsf{PageRank} \longrightarrow \mathsf{Google}$$

Rank nodes

$$PageRank \longrightarrow Google$$

Random web surfer

Rank nodes

$$\mathsf{PageRank} \longrightarrow \mathsf{Google}$$

Random web surfer

"If I move around at random, where will I tend to find myself?"

Rank nodes

$$PageRank \longrightarrow Google$$

Random web surfer

"If I move around at random, where will I tend to **find myself**?"

wikipedia.org

wikipedia.org

Sparse network has a sparse adjacency matrix (mostly zeros)

Sparse network has a sparse adjacency matrix (mostly zeros)

typical degree << N

Sparse network has a sparse adjacency matrix (mostly zeros)

typical degree << N

max degree << N

Sparse network has a sparse adjacency matrix (mostly zeros)

typical degree << N

max degree << N

"dense" is sometimes abused

Types of networks and subnetworks

Trees Networks with **no loops**

Trees Networks with **no loops**

Trees Networks with **no loops**

Regular Every node has the same degree

Star graph

Mathworld

Bipartite graph

Bipartite graph Two types of nodes

Bipartite graph Tv

Two **types** of nodes

Links only between nodes of **different types**

Bipartite graph

Two **types** of nodes

Links only between nodes of **different types**

Movies \leftrightarrow Actors Enzymes \leftrightarrow Metabolites Scientists \leftrightarrow Papers

Bipartite **projection**

Movies ↔ Actors

Bipartite **projection** Link nodes in one group that have **common neighbors** in the other group

Movies ↔ Actors

Bipartite **projection** Link nodes in one group that have **common neighbors** in the other group

Movies \longleftrightarrow Actors

"Movies that star the same actor(s)"

Bipartite **projection** Link nodes in one group that have **common neighbors** in the other group

Movies \leftrightarrow Actors "Movies that star the same actor(s)"

"Actors that appeared in the same movie(s)"

Multigraphs

More than one link between node pairs

Multigraphs

More than one link between node pairs

Hypergraphs

Links between more than two nodes

Etc.

nonsimple graph with loops

nonsimple graph with multiple edges

simple graph

Mathworld

Random network models

Modeling networks

Modeling networks

So much data nowadays

Modeling networks

So much data nowadays

Why turn to models?

So much data nowadays

Why turn to models?

A1. Wasn't always this much data

So much data nowadays

Why turn to models?

A1. Wasn't always this much data

A2.

Why turn to models?

A2.

Why turn to models?

A2. To try to understand underlying principles or organizing laws

Why turn to models?

A2. To try to understand underlying principles or organizing laws Build **simplified** networks preserving/destroying certain features or properties

Why turn to models?

A2. To try to understand underlying principles or organizing laws Build **simplified** networks preserving/destroying certain features or properties

What's similar/ different in these reduced networks (models)?

Why turn to models?

A2. To try to understand underlying principles or organizing laws Build **simplified** networks preserving/destroying certain features or properties

What's similar/ different in these reduced networks (models)?

Trees and lattices

Simple models

Trees and lattices

Simple models

Completely regular or ordered

Randomness

replace **overwhelming details** with simple **probabilistic rules** (coin flips)

Random graphs

1736 Graph theory

Random graphs

1736 Graph theory

Euler

1959 Random graph theory

Erdős

Rényi

Gilbert

1. Start with an empty graph of N nodes

- 1. Start with an empty graph of N nodes
- Look at every pair of nodes: With probability p connect that pair with a link

- 1. Start with an empty graph of N nodes
- Look at every pair of nodes: With probability p connect that pair with a link

Degree distribution

Degree distribution

Np looks important

Degree distribution

 N_p looks important \longrightarrow What is it?

Degree distribution

 N_p looks important \longrightarrow What is it?

average degree

Degree distribution

Np looks important \longrightarrow What is it? $\langle k \rangle = (N-1)p \quad \xleftarrow{\text{well....}} \text{average degree}$

Degree distribution

Np looks important \longrightarrow What is it? $\langle k \rangle = (N-1)p \quad \stackrel{\text{well....}}{\longleftarrow} \quad \text{average degree}$ $P(k) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}$

Watts-Strogatz

Entering the modern era, 1998

Collective dynamics of 'small-world' networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

Introduced clustering coefficient

Nature, 1998

Besides triangles, they were interested in **distances**

Besides triangles, they were interested in **distances**

1960s Milgram asked "How far apart are we?"

Besides triangles, they were interested in **distances**

Regular

Besides triangles, they were interested in **distances**

Regular p=0 p=1Increasing randomness

Besides triangles, they were interested in **distances**

Besides triangles, they were interested in **distances**

Watts-Strogatz Model

Besides triangles, they were interested in **distances**

Increasing randomness

Watts-Strogatz Model

Besides triangles, they were interested in **distances**

Small-world:

Diameter much smaller than number of nodes *N*

 $D \sim \log(N)$

Scale-free networks

Scale-free networks

Science, 1999

Scale-free networks

Hubs!

Earlier models \longrightarrow No hubs

→ Growing network model

→ Growing network model

1. start with a seed graph

Growing network model

1. start with a seed graph 2. give birth to a new node

 \longrightarrow

Growing network model

1. start with a seed graph 2. give birth to a new node

Each timestep new node **attaches** to *m* existing node

Each timestep new node **attaches** to *m* existing node

How?

How? Rich-get-richer → Preferential Attachment

Link to existing node *i* with probability:

$$P_{\text{attach}}(\mathbf{i}) = \frac{k_{\mathbf{i}}}{\sum_{j} k_{j}}$$

Preferential Attachment

$$P_{\text{attach}}(\mathbf{i}) = \frac{k_{\mathbf{i}}}{\sum_{j} k_{j}}$$

Preferential Attachment + Growth

Preferential Attachment + Growth

Not the first: 1955!

ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS

By HERBERT A. SIMON[†] Carnegie Institute of Technology

Preferential Attachment + Growth

Not the first: 1955!

ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS By HERBERT A. SIMON[†] Carnegie Institute of Technology

But they found it in **new systems**

Preferential Growth +Attachment

Not the first: 1955!

ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS By HERBERT A. SIMON[†]

Carnegie Institute of Technology

Heavy-tailed, scale-free, power-law, degree distributions

Where does PA come from?

Preferential Attachment

$$P_{\text{attach}}(\mathbf{i}) = \frac{k_{\mathbf{i}}}{\sum_{j} k_{j}}$$

Where does PA come from?

Preferential Attachment

$$P_{\text{attach}}(\mathbf{i}) = \frac{k_{\mathbf{i}}}{\sum_{j} k_{j}}$$

Where does PA come from?

Preferential Attachment

$$P_{\text{attach}}(\mathbf{i}) = \frac{k_{\mathbf{i}}}{\sum_{j} k_{j}}$$

Requires global information

Redirection model

Redirection model

Redirection model

New node: pick a **random** node and attach

Redirection model

New node: pick a **random** node and attach

Redirection model

Then, flip a coin

Redirection model

Then, flip a coin With prob p you redirect the new link to an **ancestor**

Redirection model

Then, flip a coin With prob p you redirect the new link to an **ancestor**

Redirection model

Then, flip a coin With prob p you redirect the new link to an **ancestor**

Continue

Redirection model

Nodes with more descendants are **more likely** to gain **new** descendants through redirection

Redirection model

Nodes with more descendants are **more likely** to gain **new** descendants through redirection

Redirection model

Nodes with more descendants are **more likely** to gain **new** descendants through redirection

Rich-get-richer is **automatic!**

One more

Configuration model
Generate degrees:

Generate degrees:

Make empty stubs

5 2 I 3 I 2

Make empty stubs

Doesn't just **preserve** degree distribution but **degree sequence**

Doesn't just **preserve** degree distribution but **degree sequence**

Useful null model: all structure destroyed except degrees

Part II

Getting started on a computer

druce-xe-x 2 blong blong 40% 2007-10-21 00:54 u ldeor druce-xe-x 2 blong blong 40% 2007-11-24 10:03 umarer/ druce-xe-x 4 blong blong 40% 2007-10-21 00:54 willpaper/	
(*119) iz backup Desktop download egydrop bi.pg photo bin Deu damp ganes levels.pixelman pix bi document dahelper Nex mount programmi	sh video snapshot vmusz ng tex willy
(*)15) 12 *F backup Bow dubelperz hi, py pisz ; biw documentz egydropz levels, pixelnan programming ; biz dowelowić gamenz nousić ské samphotz ;	tenar videor muartar un lipaper r
(*16) of programing-python- 17-programing-python12> is contoll.py except.py os_doc.txt testman.py web.py dl-mod functione.py pygane ucpy webython-de	no-2.8.7.1.tar.bz2
evelog.txt gladn pytest eneclass.py examples inread.py temp.out eneclass.pyc [7/grogramming-python100 is =F conical.py= except.py ex_for.txt= testmen.py= web.py=	
ere log, txt gladov pytestv useclass.pg= examplesv isecad.pg= temp.out= useclass.pg= {"/program.log/python.l19>	- 4090-2.0.7.1.18F.

Demo time

Demo time

NetworkX

NetworkX Home | Download | Developer Zone | Documentation | Blog »

High productivity software for complex networks

NetworkX is a Python language software package for the creation, manipulat of the structure, dynamics, and functions of complex networks.

Quick Example

networkx.lanl.gov python.org

Cytoscape

cytoscape.org

Gephi

gephi.org

How to find stuff

Recall

How to find stuff

Recall

Can I find things on a network with only local information?

Can I find things on a network with only local information?

Can I find things on a network with only local information?

Kleinberg

Kleinberg

Navigation in a small world

It is easier to find short chains between points in some ne

he small-world phenomenon — the tions follow an inverse-square distribution principle that most of us are linked by there is a decentralized algorithm the short chains of acquaintances — was achieves a very rapid delivery time; T

Networks exist in space

Navigation in a small world It is easier to find short chains between points in some ne The small-world phenomenon — the principle that most of us are linked by short chains of acquaintances — was Algorithmic analysis of the Milgram letter passing experiment

How **long** does it take to send a letter from a source to target with only local information?

Navigation in a small world It is easier to find short chains between points in some ne The small-world phenomenon — the principle that most of us are linked by short chains of acquaintances — was

Algorithmic analysis of the Milgram letter passing experiment

Kleinberg model

Navigation in a small world It is easier to find short chains between points in some ne

he small-world phenomenon — the tions follow an inverse-square distribution there is a decentralized algorithm the short chains of acquaintances — was achieves a very rapid delivery time; T

Algorithmic analysis of the Milgram letter passing experiment

Kleinberg I) 2D lattice model

Navigation in a small world It is easier to find short chains between points in some ne The small-world phenomenon — the principle that most of us are linked by short chains of acquaintances — was

Algorithmic analysis of the Milgram letter passing experiment

Kleinberg I) 2D lattice model

2) Add one long-range link to each node

 Navigation in a small world

 It is easier to find short chains between points in some ne

 The small-world phenomenon — the principle that most of us are linked by short chains of acquaintances — was

 tions follow an inverse-square distribution there is a decentralized algorithm the achieves a very rapid delivery time; T

Algorithmic analysis of the Milgram letter passing experiment

Kleinberg I) 2D lattice model

2) Add one long-range link to each node

3) Each node is a person and only knows the location of five neighbors

Kleinberg model

Models local neighbors and long-distance friendships

Kleinberg model

Models local neighbors and long-distance friendships

Long-range links

Kleinberg model

Models local neighbors and long-distance friendships

Long-range links

Neighbor at distance *r* linked with probability:

Kleinberg model

Models **local** neighbors and **long-distance** friendships

Long-range links

Neighbor at distance *r* linked with probability:

$$P_{\text{link}}(\boldsymbol{r}) = \frac{\boldsymbol{r}^{-\boldsymbol{\alpha}}}{\sum_{\ell} \ell^{-\boldsymbol{\alpha}}}$$

Kleinberg model

Long-range links

Neighbor at distance *r* linked with probability:

$$P_{\rm link}(\mathbf{r}) = \frac{\mathbf{r}^{-\alpha}}{\sum_{\ell} \ell^{-\alpha}}$$

 α "clustering exponent"

 $\alpha = 0$

 $\alpha
ightarrow \infty$

Navigation Pass message from source to target along neighbors

Only told location of target

Only told location of target

Use greedy algorithm:

Each message holder sends message to neighbor closest to the target

Kleinberg model

How many times T must the message be passed?

Kleinberg model

How many times T must the message be passed?

 $\alpha
ightarrow \infty$

No long-range links: **slow**
Kleinberg model

How many times T must the message be passed?

 $\alpha \to \infty$ $\alpha = 0$

No long-range links: **slow**

Long-range links too long: **slow**

Kleinberg model

How many times T must the message be passed?

?

 $\alpha \to \infty$ $\alpha = 0$

No long-range links: **slow** Long-range links too long: **slow**

Kleinberg How many times T must the message model be passed?

Greedy navigation is fastest when $\alpha = 2$

Kleinberg How many times T must the message model be passed?

Greedy navigation is fastest when $\alpha = 2$

Kleinberg How many times T must the message model be passed?

Greedy navigation is fastest when $\alpha = 2$

Proof $T \ge CN^{\beta}, \quad \text{for } \alpha \neq 2$ $T \ge C (\log N)^{\gamma}, \text{ for } \alpha = 2$

Kleinberg How many times T must the message model be passed?

Greedy navigation is fastest when $\alpha = 2$

Simulations 7.0^{-} 0.0^{-} 0

Algorithms are fine but there are also sociological aspects to navigation/ message passing

Q: which links are used to navigation?

Granovetter, 1973

How do people **find jobs**?

Granovetter, 1973

How do people find jobs?

Not from **best** friends—they have the same info you do!

Granovetter, 1973

How do people find jobs?

Not from **best** friends—they have the same info you do!

Infrequent contacts—new pools of info

Granovetter, 1973

Modern validation \longrightarrow Mobile phones

Modern validation —

Mobile phones

Structure and tie strengths in mobile communication networks

J.-P. Onnela*^{†‡}, J. Saramäki*, J. Hyvönen*, G. Szabó^{§¶}, D. Lazer^I, K. Kaski*, J. Kerté

*Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FI-02015 TKK, Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United Kingdom; ⁵Department of Physics and Ce University of Notre Dame, South Bend, IN 46556; ¹Center for Cancer Systems Biology, Dana–Farber Cancer Ir Boston, MA 02115; ¹John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138; and Theoretical Physics. Budapest University of Technology and Economics. H1111. Budapest, Hundarv

PNAS, 2007

Modern validation \longrightarrow Mobile phones

Structure and tie strengths in mobile communication networks

J.-P. Onnela*^{†‡}, J. Saramäki*, J. Hyvönen*, G. Szabó^{§¶}, D. Lazer^I, K. Kaski*, J. Kerté

*Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FI-02015 TKK, Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United Kingdom; ⁵Department of Physics and Ce University of Notre Dame, South Bend, IN 46556; ¹Center for Cancer Systems Biology, Dana–Farber Cancer Ir Boston, MA 02115; ¹John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138; and Theoretical Physics. Budapest University of Technology and Economics. H1111. Budapest, Hungary

PNAS, 2007

Networks are composed of many simple interacting **elements**

Networks are composed of many simple interacting **elements**

Elements can fail

Networks are composed of many simple interacting **elements**

Elements can fail

How do **networks** fail?

Model fluid percolating through porous soil

Model soil with lattice

How many bonds should I cut until water won't flow?

In other words, when is there a **spanning cluster**?

How many bonds should I cut until water won't flow?

In other words, when is there a **spanning cluster**?

In the context of **networks**

Have a random graph:

Random nodes fail (site percolation)

•Random links fail (bond percolation)

Does the network lose global connectivity?

No spanning cluster \rightarrow

No Giant Connected Component (GCC)

Þ

How do networks respond to random failures?

How do networks respond to random failures?

Is global damage gradual or sudden?

Many systems show a **sharp transition** in connectivity

Percolation transition

Hubs!

Scale-free graphs

Scale-free graphs Hubs!

Imagine I randomly remove nodes from a very large scale-free network

Scale-free graphs Hubs!

Imagine I randomly remove Unlikely I'll hit all nodes from a very large the hubs scale-free network

Scale-free graphs Hubs!

Imagine I randomly remove Unlikely I'll hit all nodes from a very large the hubs scale-free network

Hubs do a disproportionate job gluing the network together

Hubs! Scale-free graphs

Imagine I randomly remove Unlikely I'll hit all nodes from a very large the hubs scale-free network

Hubs do a disproportionate Very unlikely I can make job gluing the network the network fall apart together

Scale-free graphs

are **robust** against random failures!

Error and attack tolerance of complex networks

Réka Albert, Hawoong Jeong & Albert-László Barabási

Department of Physics, 225 Nieuwland Science Hall, University o Notre Dame, Indiana 46556, USA

Nature, 2000

Resilience of the Internet to Random Breakdowns

Reuven Cohen,^{1,*} Keren Erez,¹ Daniel ben-Avraham,² and Shlomo Havlin¹ *Vinerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, I*. ²*Physics Department and Center for Statistical Physics (CISP), Clarkson University Potsdam, New York 13699-5820* (Received 11 July 2000; revised manuscript received 31 August 2000)

Phys Rev Lett, 2000

Scale-free graphs are **robust** against random failures!

Scale-free graphs are **robust** against random failures!

Some networks are special

Scale-free graphs are **robust** against random failures!

Some networks are special

Scale-free graphs are **robust** against random failures!

Scale-free networks robust to random failures

Do failures need to be **random**?

Scale-free networks robust to random failures

Do failures need to be **random**?

Attack the network

Scale-free networks robust to random failures

Do failures need to be **random**?

Attack the network Attack the hubs

Scale-free networks robust to random failures

Do failures need to be **random**?

Attack the network Attack the hubs Hubs are **more likely** to fail

Scale-free networks robust to random failures

Scale-free networks robust to random failures

Scale-free networks **especially vulnerable** to **targeted attacks**!

Scale-free networks robust to random failures

Error and attack tolerance of complex networks

Réka Albert, Hawoong Jeong & Albert-László Barabási

Department of Physics, 225 Nieuwland Science Hall, University o Notre Dame, Indiana 46556, USA

Nature, 2000

Scale-free networks **especially vulnerable** to **targeted attacks**!

Breakdown of the Internet under Intentional Attack

Reuven Cohen,^{1,*} Keren Erez,¹ Daniel ben-Avraham,² and Shlomo Havlin¹ ¹Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, Israel ²Department of Physics, Clarkson University, Potsdam, New York 13699-5820 (Received 17 October 2000)

Phys Rev Lett, 2001

Deleting a **small number of hubs** will **drastically disconnect** the network

Tons of results and variants

Tons of results and variants

Explosive percolation Cascading failures

• • • •

Tons of results and variants

Explosive percolation Cascading failures

• • • •

Lots of applications

Tons of results and variants

Explosive percolation Cascading failures

• • • •

Lots of applications -

Many complex problems map into simple percolation models

Tons of results and variants

Explosive percolation Cascading failures

••••

Lots of applications -

Many complex problems map into simple percolation models
Epidemics / Vaccinations

Oscillators at each node, \longrightarrow coupled with neighbors

→ Can they synchronize?

Oscillators at each node, coupled with neighbors

HUGE

area

REVIEWS OF MODERN PHYSICS, VOLUME 77, JANUARY 2005

The Kuramoto model: A simple paradigm for synchronization phenomena

Juan A. Acebrón*

Departamento de Automática, Universidad de Alcalá, Crta. Madrid-Barcelona, km 31.600, 28871 Alcalá de Henares, Spain

L. L. Bonilla[†]

Grupo de Modelización y Simulación Numérica, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain

Conrad J. Pérez Vicente[‡] and Félix Ritort[§]

Department de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

Renato Spigler[®]

Dipartimento di Matematica, Università di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy

Disease outbreak viral marketing information cascade

Disease outbreak viral marketing information cascade

Disease outbreak viral marketing information cascade

Compartmental models No network...

SI model

People are **Susceptible** or **Infected**

Compartmental models No network...

Compartmental models No network...

SIR model People are **Susceptible**, **Infected**, or **Recovered**

Compartmental models No network...

SI on a **network**

Unlike compartments, an outbreak might not infect **everyone**

If the network is **disconnected**

Percolation

SI on a **network**

Distribution of component sizes tells us how big outbreak will be

(more than just GCC)

SIR on a **network**

People recover after a certain **time**

An infected node might recover **before** coming into **contact** with a neighbor

 ϕ Transmission probability

SIR on a **network**

 ϕ Transmission probability

Disease not being transmitted = cut link

SIR on a **network**

 ϕ Transmission probability

SIR on a **network**

 ϕ Transmission probability

SIR on a **network**

 ϕ Transmission probability

SIR on a **network** ϕ Transmission probability Random disease = **bond** percolation

Expected statistics of bond percolation clusters

Teach us about **expected behavior** of SIR model on the network
What if network is connected?

What if network is connected?

Deleting nodes = vaccinating people

What if network is connected? Deleting nodes = vaccinating people

Limited number of vaccines: who to vaccinate?

What if network is connected? Deleting nodes = vaccinating people

Limited number of vaccines: who to vaccinate?

Attack the **hubs**!

Shatter the network = prevent large outbreak

How to find the hubs when you don't know the network

How to find the hubs when you don't know the network

I. Pick someone at random2. Ask who their friends are3. Vaccinate friends

How to find the hubs when you don't know the network

I. Pick someone at random2. Ask who their friends are3. Vaccinate friends

Mimics Krapivsky-Redner **redirection**

How to find the hubs when you don't know the network

I. Pick someone at random2. Ask who their friends are3. Vaccinate friends

Mimics Krapivsky-Redner **redirection**

Vaccines distributed by preferential attachment

Communities

local

Mesoscopic Structure local global motifs navigation mixing hierarchy degree degree distribution modules clustering robustness

modules

global

local

Communities

Illustration. Newman, PNAS 103, 8577-8582 (2006).

Communities

No **precise** definition

groups of nodes with

- many internal links
- few external links

Community problem

Community problem

Community problem

Optimization

Circuit boards Load balancing Disease spreading

Optimization

Circuit boards Load balancing Disease spreading

Protein complexes Biology Functional modules Neuronal clusters

Optimization

Circuit boards Load balancing Disease spreading

Protein complexes Biology Functional modules Neuronal clusters

Inferring hidden relationships

Dynamics

Circuit Boards

Distributed Computing

Distributed Computing

Distributed Computing

Life Sciences

Life Sciences

Life Sciences

(Palla et al., 2005)

Summary
Outline

Part I

- History
- Network examples/data
- Why study networks?
- Network quantifiers (jargon!)
- Types of networks
- Random network models

Part II

- Getting started on a computer
- Network search
- Network robustness
- Dynamics on networks

slides will be on **bagrow.com**